Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (5) : 10    https://doi.org/10.1007/s11783-017-0997-4
RESEARCH ARTICLE
Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis
Xiaonan Liu1, Qiuxia Tan2, Yungui Li2, Zhonghui Xu2, Mengjun Chen2()
1. State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, China
2. Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
 Download: PDF(182 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

WPCBs concentrated metal scraps were directly and successfully recycled by electrolysis.

Factors that affect the electrolysis were discussed in detail.

Copper recovery rate and copper purity are up to 97.32% and 99.86% respectively.

Copper recovery is the core of waste printed circuit boards (WPCBs) treatment. In this study, we proposed a feasible and efficient way to recover copper from WPCBs concentrated metal scraps by direct electrolysis and factors that affect copper recovery rate and purity, mainly CuSO4·5H2O concentration, NaCl concentration, H2SO4 concentration and current density, were discussed in detail. The results indicated that copper recovery rate increased first with the increase of CuSO4·5H2O NaCl, H2SO4 and current density and then decreased with further increasing these conditions. NaCl, H2SO4 and current density also showed a similar impact on copper purity, which also increased first and then decreased. Copper purity increased with the increase of CuSO4·5H2O. When the concentration of CuSO4·5H2O, NaCl and H2SO4 was respectively 90, 40 and 118 g/L and current density was 80 mA/cm2, copper recovery rate and purity was up to 97.32% and 99.86%, respectively. Thus, electrolysis proposes a feasible and prospective approach for waste printed circuit boards recycle, even for e-waste, though more researches are needed for industrial application.

Keywords Waste printed circuit boards (WPCBs)      Copper      Recovery rate      Purity      Electrolysis     
Corresponding Author(s): Mengjun Chen   
Issue Date: 28 September 2017
 Cite this article:   
Xiaonan Liu,Qiuxia Tan,Yungui Li, et al. Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis[J]. Front. Environ. Sci. Eng., 2017, 11(5): 10.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0997-4
https://academic.hep.com.cn/fese/EN/Y2017/V11/I5/10
ElementCuSnPbAlZnFeBaBiNiOthers
Content (%)83.422.722.361.960.960.230.480.110.0397.721
Tab.1  Metals contained in WPCBs metal concentrated scraps
Fig.1  Schematic of experimental set-up
Fig.2  Effect of CuSO4·5H2O on copper recovery rate and purity
Fig.3  Effect of NaCl on copper recovery rate and purity
Fig.4  Effect of H2SO4 on copper recovery rate and purity
Fig.5  Effect of current density on copper recovery rate and purity
8 Shokri A, Pahlevani F, Cole I, Sahajwalla V. Selective thermal transformation of old computer printed circuit boards to Cu-Sn based alloy. Journal of Environmental Management, 2017, 199: 7–12
https://doi.org/10.1016/j.jenvman.2017.05.028 pmid: 28521210
9 Xiu F R, Weng H W, Qi Y Y, Yu G D, Zhang Z G, Zhang F S, Chen M. A novel recovery method of copper from waste printed circuit boards by supercritical methanol process: Preparation of ultrafine copper materials. Waste Management (New York, N.Y.), 2016 , 60: 643–651
pmid: 27876566
10 Cui J, Zhang L. Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 2008, 158(2–3): 228–256
https://doi.org/10.1016/j.jhazmat.2008.02.001 pmid: 18359555
11 Li J H, Duan H B, Yu K L, Liu L L, Wang S T. Characteristic of low-temperature pyrolysis of printed circuit boards subjected to various atmosphere. Resources, Conservation and Recycling, 2010, 54(11): 810–815
https://doi.org/10.1016/j.resconrec.2009.12.011
12 Duan H B, Li J H, Liu Y C, Yamazaki N, Jiang W. Characterizing the emission of chlorinated/brominated dibenzo-p-dioxins and furans from low-temperature thermal processing of waste printed circuit board. Environmental Pollution, 2012, 161(1): 185–191
https://doi.org/10.1016/j.envpol.2011.10.033 pmid: 22230084
13 Park Y J, Fray D J. Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 2009, 164(2-3): 1152–1158
https://doi.org/10.1016/j.jhazmat.2008.09.043 pmid: 18980802
14 Zhu P, Fan Z Y, Lin J, Liu Q, Qian G R, Zhou M. Enhancement of leaching copper by electro-oxidation from metal powders of waste printed circuit board. Journal of Hazardous Materials, 2009, 166(2–3): 746–750
https://doi.org/10.1016/j.jhazmat.2008.11.129 pmid: 19157692
1 Zeng X L, Yang C R, Chiang J F, Li J H. Innovating e-waste management: From macroscopic to microscopic scales. Science of the Total Environment, 2017, 575: 1–5
https://doi.org/10.1016/j.scitotenv.2016.09.078 pmid: 27723459
2 Tan Q Y, Dong Q Y, Liu L L, Song Q B, Liang Y Y, Li J H. Potential recycling availability and capacity assessment on typical metals in waste mobile phones: A current research study in China. Journal of Cleaner Production, 2017, 148: 509–517
https://doi.org/10.1016/j.jclepro.2017.02.036
3 Jadhav U, Su C, Hocheng H. Leaching of metals from large pieces of printed circuit boards using citric acid and hydrogen peroxide. Environmental Science and Pollution Research International, 2016, 23(23): 24384–24392
https://doi.org/10.1007/s11356-016-7695-9 pmid: 27655620
4 Yang C R, Li J H, Tan Q Y, Liu L L, Dong Q Y. Green process of metal recycling: Coprocessing waste printed circuit boards and spent tin stripping solution. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3524–3534
https://doi.org/10.1021/acssuschemeng.7b00245
5 Kim E Y, Kim M S, Lee J C, Jeong J, Pandey B D. Leaching kinetics of copper from waste printed circuit boards by electro-generated chlorine in HCl solution. Hydrometallurgy, 2011, 107(3–4): 124–132
https://doi.org/10.1016/j.hydromet.2011.02.009
6 Xia M C, Wang Y P, Peng T J, Shen L, Yu R L, Liu Y D, Chen M, Li J K, Wu X L, Zeng W M. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. Journal of Bioscience and Bioengineering, 2017, 123(6): 714–721
https://doi.org/10.1016/j.jbiosc.2016.12.017 pmid: 28319019
7 Zhang S, Li Y G, Wang R, Xu Z H, Wang B, Chen S, Chen M J. Superfine copper powders recycled from concentrated metal scraps of waste printed circuit boards by slurry electrolysis. Journal of Cleaner Production, 2017, 152: 1–6
https://doi.org/10.1016/j.jclepro.2017.03.087
15 Havlik T, Orac D, Berwanger M, Maul A. The effect of mechanical–physical pretreatment on hydrometallurgical extraction of copper and tin in residue from printed circuit boards from used consumer equipment. Minerals Engineering, 2014, 65(2): 163–171
https://doi.org/10.1016/j.mineng.2014.06.004
16 Rozas E E, Mendes M A, Nascimento C A O, Espinosa D C R, Oliveira R, Oliveira G, Custodio M R. Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). Journal of Hazardous Materials, 2017, 329: 120–130
https://doi.org/10.1016/j.jhazmat.2017.01.037 pmid: 28131039
17 Calgaro C O, Schlemmer D F, da Silva M D C R, Maziero E V, Tanabe E H, Bertuol D A. Fast copper extraction from printed circuit boards using supercritical carbon dioxide. Waste Management (New York, N.Y.), 2015, 45: 289–297
https://doi.org/10.1016/j.wasman.2015.05.017 pmid: 26022338
18 Xiu F R, Zhang F S. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process. Journal of Hazardous Materials, 2009, 165(1–3): 1002–1007
https://doi.org/10.1016/j.jhazmat.2008.10.088 pmid: 19056170
19 Verma H R, Singh K K, Mankhand T R. Delamination mechanism study of large size waste printed circuit boards by using dimethylacetamide. Waste Management (New York, N.Y.), 2017, 65: 139–146
https://doi.org/10.1016/j.wasman.2017.04.013 pmid: 28416085
20 Awasthi A K, Zlamparet G I, Zeng X L, Li J H. Evaluating waste printed circuit boards recycling: Opportunities and challenges, a mini review. Waste Management & Research, 2017, 35(4): 346–356
https://doi.org/10.1177/0734242X16682607 pmid: 28097947
21 Ning C, Lin C S K, Hui D C W, McKay G. Waste Printed Circuit Board (PCB) Recycling Techniques. Topics in Current Chemistry, 2017, 375(2): 43
https://doi.org/10.1007/s41061-017-0118-7 pmid: 28353257
22 Madavali B, Lee J H, Jin K L, Cho K Y, Challapalli S, Hong S J. Effects of atmosphere and milling time on the coarsening of copper powders during mechanical milling. Powder Technology, 2014, 256(2): 251–256
https://doi.org/10.1016/j.powtec.2014.02.019
23 Chu Y Y, Chen M J, Chen S, Wang B, Fu K B, Chen H Y. Micro-copper powders recovered from waste printed circuit boards by electrolysis. Hydrometallurgy, 2015, 156: 152–157
https://doi.org/10.1016/j.hydromet.2015.06.006
24 Wilson M A, Burt R, Lynn W C, Klameth L C. Total elemental analysis digestion method evaluation on soils and clays. Communications in Soil Science and Plant Analysis, 1997, 28(6–8): 407–426
https://doi.org/10.1080/00103629709369800
25 Somasundaram M, Saravanathamizhan R, Basha C A, Nandakumar V, Begum S N, Kannadasan T. Recovery of copper from scrap printed circuit board: modelling and optimization using response surface methodology. Powder Technology, 2014, 266(6): 1–6
https://doi.org/10.1016/j.powtec.2014.06.006
26 Matsushima H, Bund A, Plieth W, Kikuchi S, Fukunaka Y. Copper electrodeposition in a magnetic field. Electrochimica Acta, 2007, 53(1): 161–166
https://doi.org/10.1016/j.electacta.2007.01.043
[1] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[2] Fei Xie, Bowei Zhao, Ying Cui, Xiao Ma, Xiao Zhang, Xiuping Yue. Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled with iron-carbon micro-electrolysis[J]. Front. Environ. Sci. Eng., 2021, 15(6): 121-.
[3] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[4] Songwei Lin, Yaobin Lu, Bo Ye, Cuiping Zeng, Guangli Liu, Jieling Li, Haiping Luo, Renduo Zhang. Pesticide wastewater treatment using the combination of the microbial electrolysis desalination and chemical-production cell and Fenton process[J]. Front. Environ. Sci. Eng., 2020, 14(1): 12-.
[5] Christine C. Nguyen, Cody N. Hugie, Molly L. Kile, Tala Navab-Daneshmand. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 46-.
[6] Xia Hou, Liping Huang, Peng Zhou, Hua Xue, Ning Li. Response of indigenous Cd-tolerant electrochemically active bacteria in MECs toward exotic Cr(VI) based on the sensing of fluorescence probes[J]. Front. Environ. Sci. Eng., 2018, 12(4): 7-.
[7] Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 9-.
[8] Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma. Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments[J]. Front. Environ. Sci. Eng., 2018, 12(2): 7-.
[9] Guiying RAO, Kristen S. BRASTAD, Qianyi ZHANG, Rebecca ROBINSON, Zhen HE, Ying LI. Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane[J]. Front. Environ. Sci. Eng., 2016, 10(4): 11-.
[10] Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG. Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1084-1095.
[11] Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment[J]. Front. Environ. Sci. Eng., 2015, 9(4): 625-633.
[12] Xiaowei ZHANG,Qinyan YUE,Dongting YUE,Baoyu GAO,Xiaojuan WANG. Application of Fe0/C/Clay ceramics for decoloration of synthetic Acid Red 73 and Reactive Blue 4 wastewater by micro-electrolysis[J]. Front. Environ. Sci. Eng., 2015, 9(3): 402-410.
[13] Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG. Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell[J]. Front.Environ.Sci.Eng., 2014, 8(4): 624-630.
[14] Xiaolong SONG,Jianxin YANG,Bin LU,Bo LI,Guangyuan ZENG. Identification and assessment of environmental burdens of Chinese copper production from a life cycle perspective[J]. Front.Environ.Sci.Eng., 2014, 8(4): 580-588.
[15] Yifei SUN, Xin FU, Wei QIAO, Wei WANG, Tianle ZHU, Xinghua LI. Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported copper or zinc[J]. Front Envir Sci Eng, 2013, 7(6): 827-832.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed