Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (2) : 8    https://doi.org/10.1007/s11783-017-1002-y
RESEARCH ARTICLE
Can floor-area-ratio incentive promote low impact development in a highly urbanized area? —A case study in Changzhou City, China
Ming Cheng, Huapeng Qin(), Kangmao He, Hongliang Xu
Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
 Download: PDF(344 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Promoting low impact development through floor-area-ratio incentive

Transacting between surface runoff reduction and awarding FAR

Comparing different objectives of the government and developers in the trade-off

As an environmental friendly measure for surface runoff reduction, low impact development (LID) has been applied successfully in urban areas. However, due to high price of land and additional expense for LID construction in highly urbanized areas, the developers of real estate would not like to proceed LID exploitation. Floor area ratio (FAR) refers to “the ratio of a building’s total floor area to the size of the piece of land upon which it is built.” Increasing FAR indicates that the developers can construct higher buildings and earn more money. By means of awarding FAR, the developers may be willing to practice LID construction. In this study, a new residential district is selected as a case study to analyze the trade-off between the runoff reduction goal achieving by LID practices and the incentive of awarding FAR to promote LID construction. The System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN) model is applied to simulate the runoff reduction under various LID designs and then derive the Pareto-optimal solutions to achieve urban runoff reduction goals based on cost efficiency. The results indicates that the maximum surface runoff reduction is 20.5%. Under the extremity scenarios, the government has options to award FAR of 0.028, 0.038 and 0.047 and the net benefits developers gain are 0 CNY, one million CNY and two million CNY, respectively. The results provide a LID construction guideline related to awarding FAR, which supports incentive policy making for promoting LID practices in the highly urbanized areas.

Keywords Low impact development      Runoff reduction      Incentive      Floor area ratio      SUSTAIN(System for Urban Stormwater Treatment and Analysis IntegratioN)     
Corresponding Author(s): Huapeng Qin   
Issue Date: 29 September 2017
 Cite this article:   
Ming Cheng,Huapeng Qin,Kangmao He, et al. Can floor-area-ratio incentive promote low impact development in a highly urbanized area? —A case study in Changzhou City, China[J]. Front. Environ. Sci. Eng., 2018, 12(2): 8.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-1002-y
https://academic.hep.com.cn/fese/EN/Y2018/V12/I2/8
Fig.1  (a) Overall aerial view, (b) The graph of underlying surface, (c) Drainage system of the study area
Fig.2  Data for calibration and validation (a) Rain event of August 9th, 2015 for calibration, (b) Rain event from August 24th, 2015 to August 25th, 2015 for validation
LayerParameterUnitGreen roofBioretentionPermeable pavementVegetative swale
SurfaceStorage depthmm75150100
Manning's roughness0.032
PavementThicknessmm100
Void ratio0.2
Permeabilitymm/h360
SoilThicknessmm150400300
Porosity0.20.40.3
Field capacity0.10.30.2
Wilting point0.10.150.15
Initial moisture content0.150.150.15
Saturated soil infiltrationmm/h203025
StorageHeightmm75300150150
Void ratio0.50.50.50.5
UnderdrainInfiltrationmm/h013013
Tab.1  The structure of LID facilities
Fig.3  The connection schematic of aggregate LID used in the study area
LID typeThe maximum area of possible applications (m2)Construction cost (CNY/m2)Ratio of drainage area to LID area
Green roof6302951
Bioretention29088310
Porous pavement110202201
Vegetative swale5702205
Tab.2  LID facilities possibly used in the study area
Fig.4  The Pareto-optimal solutions of runoff reduction based on cost efficiency of LID construction
Fig.5  The trade-off between runoff reduction and awarding FAR
1 Hu M, Sayama T, Zhang X, Tanaka K, Takara K, Yang H. Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China. Journal of Environmental Management, 2017, 193: 430–438
https://doi.org/10.1016/j.jenvman.2017.02.020 pmid: 28237222
2 Maniquiz-Redillas M C, Kim L H. Evaluation of the capability of low-impact development practices for the removal of heavy metal from urban stormwater runoff. Environmental Technology, 2016, 37(18): 2265–2272
https://doi.org/10.1080/09593330.2016.1147610 pmid: 26862669
3 Olorunkiya J, Fassman E, Wilkinson S. Risk: A fundamental barrier to the implementation of low impact design infrastructure for urban stormwater control. Journal of Sustainable Development, 2012, 5(9): 27–41
https://doi.org/10.5539/jsd.v5n9p27
4 Kim J H, Kim H Y, Demarie F. Facilitators and barriers of applying low impact development practices in urban development. Water Resources Management, http://doi.org/ 10.1007/s11269-017-1707-5
5 Assad N. Locating barriers to and opportunities for implementing low impact development within a governance and policy framework in Southern Ontario. Thesis for the Master Degree. Guelph: The University of Guelph, 2012
6 Lu Z, Noonan D, Crittenden J, Jeong H, Wang D. Use of impact fees to incentivize low-impact development and promote compact growth. Environmental Science & Technology, 2013, 47(19): 10744–10752
https://doi.org/10.1021/es304924w pmid: 23815440
7 Atchison D, Gill P, Clancy M, Merrill A. Birch Bay Watershed Action Plan: Linking Low Impact Development with Improved Critical Areas Management. Proceedings of the Water Environment Federation, 2012: 277–288
8 Olorunkiya J O, Wilkinson S, Fassman E A, Stuart D. Eliciting Stakeholders’ preferences for low-impact design incentives: Conjoint analysis approach. Journal of Legal Affairs & Dispute Resolution in Engineering & Construction, 2013, 5(4): 180–190
https://doi.org/10.1061/(ASCE)LA.1943-4170.0000120
9 Jung S J, Yoon S H. Analysis on the influence of building coverage ratio and floor area ratio on sunlight environment and outdoor thermal environment in flat-type apartment houses. Journal of the Architectural Institute of Korea Planning & Design, 2015, 31(5): 69–76
https://doi.org/10.5659/JAIK_PD.2015.31.5.69
10 Tsai Y H. Location-demand-based residential floor area ratio distribution method. Urban Studies (Edinburgh, Scotland), 2014, 51(12): 2685–2702
https://doi.org/10.1177/0042098013506048
11 Matsuhashi K, Shiraki H, Ashina S, Ariga T. A Proposal of the floor-to-area ratio bonus for the zero carbon urban redevelopment utilizing renewable energy. Journal of Japan Society of Civil Engineers Ser G, 2014, 70(6): 81–86
12 Tsunematsu N, Yokoyama H, Honjo T, Ichihashi A, Ando H, Shigyo N. Relationship between land use variations and spatiotemporal changes in amounts of thermal infrared energy emitted from urban surfaces in downtown Tokyo on hot summer days. Urban Climate, 2016, 17: 67–79
https://doi.org/10.1016/j.uclim.2016.03.002
13 Gao J, Wang R, Huang J, Liu M. Application of BMP to urban runoff control using SUSTAIN model: Case study in an industrial area. Ecological Modelling, 2015, 318(1): 177–183
https://doi.org/10.1016/j.ecolmodel.2015.06.018
14 Lee J G, Selvakumar A, Alvi K, Riverson J, Zhen J X, Shoemaker L, Lai F. A watershed-scale design optimization model for stormwater best management practices. Environmental Modelling & Software, 2012, 37(37): 6–18
https://doi.org/10.1016/j.envsoft.2012.04.011
15 Jia H, Yao H, Tang Y, Yu S L, Field R, Tafuri A N. LID-BMPs planning for urban runoff control and the case study in China. Journal of Environmental Management, 2015, 149: 65–76
https://doi.org/10.1016/j.jenvman.2014.10.003 pmid: 25463572
16 Chen C F, Sheng M Y, Chang C L, Kang S F, Lin J Y. Application of the SUSTAIN Model to a watershed-scale case for water quality management. Water (Basel), 2014, 6(12): 3575–3589
https://doi.org/10.3390/w6123575
17 Qin H P, Li Z X, Fu G. The effects of low impact development on urban flooding under different rainfall characteristics. Journal of Environmental Management, 2013, 129(18): 577–585
https://doi.org/10.1016/j.jenvman.2013.08.026 pmid: 24029461
18 Rosa D J, Clausen J C, Dietz M E. Calibration and verification of SWMM for Low Impact Development. Jawra Journal of the American Water Resources Association, 2015, 51(3): 746–757
https://doi.org/10.1111/jawr.12272
19 Palla A, Gnecco I. Hydrologic modeling of Low Impact Development systems at the urban catchment scale. Journal of Hydrology (Amsterdam), 2015, 528: 361–368
https://doi.org/10.1016/j.jhydrol.2015.06.050
20 Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology (Amsterdam), 1970, 10(3): 282–290
https://doi.org/10.1016/0022-1694(70)90255-6
21 Jia H, Lu Y, Yu S L, Chen Y R. Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village. Separation and Purification Technology, 2012, 84(2): 112–119
https://doi.org/10.1016/j.seppur.2011.04.026
22 Tetra Tech, Inc.SUSTAIN Step-by-Step Application Guide Version 1.2. US: EPA, 2012
[1] Zhen Wang, Jiazhen Huo, Yongrui Duan. The impact of government incentives and penalties on willingness to recycle plastic waste: An evolutionary game theory perspective[J]. Front. Environ. Sci. Eng., 2020, 14(2): 29-.
[2] John C. Radcliffe, Declan Page, Bruce Naumann, Peter Dillon. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia[J]. Front. Environ. Sci. Eng., 2017, 11(4): 7-.
[3] Haifeng Jia, Zheng Wang, Xiaoyue Zhen, Mike Clar, Shaw L. Yu. China’s Sponge City construction: A discussion on technical approaches[J]. Front. Environ. Sci. Eng., 2017, 11(4): 18-.
[4] Hannah Kratky, Zhan Li, Yijun Chen, Chengjin Wang, Xiangfei Li, Tong Yu. A critical literature review of bioretention research for stormwater management in cold climate and future research recommendations[J]. Front. Environ. Sci. Eng., 2017, 11(4): 16-.
[5] Robert G. Traver, Ali Ebrahimian. Dynamic design of green stormwater infrastructure[J]. Front. Environ. Sci. Eng., 2017, 11(4): 15-.
[6] Jinsong Tao, Zijian Li, Xinlai Peng, Gaoxiang Ying. Quantitative analysis of impact of green stormwater infrastructures on combined sewer overflow control and urban flooding control[J]. Front. Environ. Sci. Eng., 2017, 11(4): 11-.
[7] Hyunju Jeong, Osvaldo A. Broesicke, Bob Drew, Duo Li, John C. Crittenden. Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia[J]. Front. Environ. Sci. Eng., 2016, 10(6): 1-.
[8] Haifeng JIA, Hairong YAO, Shaw L. YU. Advances in LID BMPs research and practice for urban runoff control in China[J]. Front Envir Sci Eng, 2013, 7(5): 709-720.
[9] Marla C. MANIQUIZ, Lee-Hyung KIM, Soyoung LEE, Jiyeon CHOI. Flow and mass balance analysis of eco-bio infiltration system[J]. Front Envir Sci Eng, 2012, 6(5): 612-619.
[10] Mow-Soung CHENG, Jenny X. ZHEN, Leslie SHOEMAKER, . BMP decision support system for evaluating stormwater management alternatives[J]. Front.Environ.Sci.Eng., 2009, 3(4): 453-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed