Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (1) : 11    https://doi.org/10.1007/s11783-018-1016-0
RESEARCH ARTICLE
The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45
Xiangqun Chi1,2, Yingying Zhang1, Daosheng Wang1, Feihua Wang1, Wei Liang1()
1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
2. BGI-Qing dao, Qingdao 266555, China
 Download: PDF(501 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nitrobenzene degraded rapidly and was removed completely in native sediments.

Indigenous microorganisms in native sediments are abundant.

Proteobacteria and Firmicutes might play important roles in nitrobenzene removal.

P. australis could provide a more suitable environment for Thauera.

The feasibility of using Phragmites australis-JS45 system in removing nitrobenzene from sediments was conducted. However, it was observed that nitrobenzene degraded rapidly and was removed completely within 20 days in native sediments, raising the possibility that indigenous microorganisms may play important roles in nitrobenzene degradation. Consequently, this study aimed to verify this possibility and investigate the potential nitrobenzene degraders among indigenous microorganisms in sediments. The abundance of inoculated strain JS45 and indigenous bacteria in sediments was quantified using real-time polymerase chain reaction. Furthermore, community structure of the indigenous bacteria was analyzed through high throughput sequencing based on Illumina MiSeq platform. The results showed that indigenous bacteria in native sediments were abundant, approximately 1014 CFU/g dry weight, which is about six orders of magnitude higher than that in fertile soils. In addition, the levels of indigenous Proteobacteria (Acinetobacter, Comamonadaceae_uncultured, Pseudomonas, and Thauera) and Firmicutes (Clostridium, Sporacetigenium, Fusibacter, Youngiibacter, and Trichococcus) increased significantly during nitrobenzene removal. Their quantities sharply decreased after nitrobenzene was removed completely, except for Pseudomonas and Thauera. Based on the results, it can be concluded that indigenous microorganisms including Proteobacteria and Firmicutes can have great potential for removing nitrobenzene from sediments. Although P. australis - JS45 system was set up in an attempt to eliminate nitrobenzene from sediments, and the system did not meet the expectation. The findings still provide valuable information on enhancing nitrobenzene removal by optimizing the sediment conditions for better growth of indigenous Proteobacteria and Firmicutes.

Keywords Community structure      Indigenous microorganisms      Nitrobenzene      Plant-microbe associated remediation      Sediment     
Corresponding Author(s): Wei Liang   
Issue Date: 07 December 2017
 Cite this article:   
Xiangqun Chi,Yingying Zhang,Daosheng Wang, et al. The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45[J]. Front. Environ. Sci. Eng., 2018, 12(1): 11.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1016-0
https://academic.hep.com.cn/fese/EN/Y2018/V12/I1/11
Treatment No.ContentsNBa) concentration
(mg/g dw)
P. australisb) density (reeds/m2)Strain JS45 abundance (cfu/g dw)
T1Native sediment000
T2Native sediment+ NB100
T3Native sediment+ NB+ P. australis1600
T4Native sediment+ NB+ Strain JS45101.5 × 108
T5Native sediment+ NB+ P. australis + strain JS451601.5 × 108
TsSterilized sediment+ NB100
Tab.1  Treatment setup
PrimersTargetSequence (5′-3′)Reference
cnbA-ScnbAACCAGCCCGTTCATTGATGthis study
cnbA-AcnbAGGACGAAGGTGGTGAACTCTthis study
cnbA-RT-S2cnbATTGCTATGGCTGCTTTCTCCthis study
cnbA-RT-A2cnbACACTGCCAGGCTATTGTCGthis study
BACT1369F16S rRNA geneCGGTGAATACGTTCYCGG[22]
PROK1541R16S rRNA geneAAGGAGGTGATCCRGCCGCA[22]
TM1389Fa)16S rRNA geneCTTGTACACACCGCCCGTC[22]
F2716S rRNA geneAGAGTTTGATCMTGGCTCAG[23]
R149216S rRNA geneTACGGYTACCTTGTTACGACTT[23]
Tab.2  Primers and probe used in this study
Fig.1  Nitrobenzene removal and aniline accumulation among different microcosms. (a) Removal of nitrobenzene; (b) the variations of aniline concentrations. Values are means±SD (error bars) (n = 3) (NB: nitrobenzene; BA: aniline)
Fig.2  cnbA gene abundance variation in inoculated microcosms. Values are means±SD (error bars) (n = 3) (NB: nitrobenzene)
Fig.3  Phylotype rarefaction curve of each sample (97% level)
Fig.4  Shannon index of microbial diversity in each sample
Fig.5  Barplot of indigenous microbial community structure of samples at different times and in different microcosms
Fig.6  PCA analysis of microbial community structures in each sample
Fig.7  Heatmap analysis of indigenous microbial community in each sample
1 Zhao S, Ramette A, Niu G L, Liu H, Zhou N Y. Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil. FEMS Microbiology Ecology, 2009, 70(2): 315–323
https://doi.org/10.1111/j.1574-6941.2009.00773.x pmid: 19825042
2 Dorigan J, Hushon J M. Air Pollution Assessment of Nitrobenzene. Mclean, Virginia: The MITRE Corporation, 1976(NTIS No. PB257–776)
3 Keith L H, Telliard W A. ES&T Special Report: Priority pollutants I—A perspective view. Environmental Science & Technology, 1979, 13(4): 416–423
https://doi.org/10.1021/es60152a601
4 Chen A, Xiao B, Liang H, Ding C, Jiang G. Soil microbial community response to nitrobenzene exposure for a spartina wetland. Soil & Sediment Contamination, 2013, 22(2): 174–184
https://doi.org/10.1080/15320383.2013.722140
5 Hu L, Zeng G M, Chen G Q, Dong H R, Liu Y T, Wan J, Chen A W, Guo Z, Yan M, Wu H P, Yu Z G. Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. Journal of Hazardous Materials, 2016, 301: 106–118
https://doi.org/10.1016/j.jhazmat.2015.08.060 pmid: 26355412
6 Wan J, Zhang C, Zeng G M, Huang D L, Hu L, Huang C, Wu H P, Wang L L. Synthesis and evaluation of a new class of stabilized nano-chlorapatite for Pb immobilization in sediment. Journal of Hazardous Materials, 2016, 320: 278–288
https://doi.org/10.1016/j.jhazmat.2016.08.038 pmid: 27565852
7 Song Y Y, Song C C, Ju S B, Chai J H, Guo J, Zhao Q D. Hydroponic uptake and distribution of nitrobenzene in Phragmites australis: Potential for phytoremediation. International Journal of Phytoremediation, 2010, 12(3): 217–225
https://doi.org/10.1080/15226510903563835 pmid: 20734617
8 Wang C, Li Y, Liu Z, Wang P. Bioremediation of nitrobenzene-polluted sediments by Pseudomonas putida. Bulletin of Environmental Contamination and Toxicology, 2009, 83(6): 865–868
https://doi.org/10.1007/s00128-009-9819-0 pmid: 19593543
9 Li M T, Cui J T, Wang J H, Wang J, Hao L L. Isolation of nitrobenzene degrading strain Pseudomonas NB001 and application in the bioremediation of polluted water body. Journal of Environmental Science and Health Part A-Toxic/Hazard Subst Environ Eng, 2012, 47(1): 70–76
10 Chaudhry Q, Blom-Zandstra M, Gupta S, Joner E J. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science and Pollution Research International, 2005, 12(1): 34–48
https://doi.org/10.1065/espr2004.08.213 pmid: 15768739
11 Hu L, Zhang C, Zeng G M, Chen G Q, Wan J, Guo Z, Wu H P, Yu Z G, Zhou Y Y, Liu J F. Metal-based quantum dots: Synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorganisms. RSC Advances, 2016, 6(82): 78595–78610
https://doi.org/10.1039/C6RA13016J
12 Sun Y B, Zhao D, Xu Y M, Wang L, Liang X F, Shen Y. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation. Frontiers of Environmental Science & Engineering, 2016, 10(1): 85–92 
https://doi.org/10.1007/s11783-014-0689-2
13 Zeng G M, Wan J, Huang D L, Hu L, Huang C, Cheng M, Xue W J, Gong X M, Wang R Z, Jiang D N. Precipitation, adsorption and rhizosphere effect: The mechanisms for Phosphate-induced Pb immobilization in soils—A review. Journal of Hazardous Materials, 2017, 339: 354–367
https://doi.org/10.1016/j.jhazmat.2017.05.038 pmid: 28668753
14 Nishino S F, Spain J C. Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Applied and Environmental Microbiology, 1993, 59(8): 2520–2525
pmid: 8368838
15 Xia L, Liu G, Chen C M, Wen M Y, Gao Y Y. Red soil for sediment capping to control the internal nutrient release under flow conditions.  Frontiers of Environmental Science & Engineering, 2016, 10(6): 14 
https://doi.org/10.1007/s11783-016-0886-2
16 Chi X Q, Zhang J J, Zhao S, Zhou N Y. Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. Environmental Pollution, 2013, 172(1): 33–41 doi:10.1016/j.envpol.2012.08.002 PMID:22982551
17 Li Y, Li J, Wang C, Wang P F. Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresource Technology, 2010, 101(17): 6740–6744
https://doi.org/10.1016/j.biortech.2010.03.083 pmid: 20385485
18 Ren S T, Li M C, Sun J Y, Bian Y H, Zuo K C, Zhang X Y, Liang P, Huang X. A novel electrochemical reactor for nitrogen and phosphorus recovery from domestic wastewater.  Frontiers of Environmental Science & Engineering, 2017, 11(4): 17 
https://doi.org/10.1007/s11783-017-0983-x
19 Lessner D J, Johnson G R, Parales R E, Spain J C, Gibson D T. Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Applied and Environmental Microbiology, 2002, 68(2): 634–641
https://doi.org/10.1128/AEM.68.2.634-641.2002 pmid: 11823201
20 Norman R J, Edberg J C, Stucki J W. Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry. Soil Science Society of America Journal, 1985, 49(5): 1182–1185
https://doi.org/10.2136/sssaj1985.03615995004900050022x
21 Chi X Q, Liu K, Zhou N Y. Effects of bioaugmentation in para-nitrophenol-contaminated soil on the abundance and community structure of ammonia-oxidizing bacteria and archaea. Applied Microbiology and Biotechnology, 2015, 99(14): 6069–6082
https://doi.org/10.1007/s00253-015-6462-z pmid: 25725631
22 Shen J P, Zhang L M, Zhu Y G, Zhang J B, He J Z. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 2008, 10(6): 1601–1611
https://doi.org/10.1111/j.1462-2920.2008.01578.x pmid: 18336563
23 Sun D L, Jiang X, Wu Q L, Zhou N Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Applied and Environmental Microbiology, 2013, 79(19): 5962–5969
https://doi.org/10.1128/AEM.01282-13 pmid: 23872556
24 Liu Z, Lozupone C, Hamady M, Bushman F D, Knight R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Research, 2007, 35(18): e120
https://doi.org/10.1093/nar/gkm541 pmid: 17881377
25 Magoč T, Salzberg S L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England), 2011, 27(21): 2957–2963
https://doi.org/10.1093/bioinformatics/btr507 pmid: 21903629
26 Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Lesniewski R A, Oakley B B, Parks D H, Robinson C J, Sahl J W, Stres B, Thallinger G G, Van Horn D J, Weber C F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75(23): 7537–7541
https://doi.org/10.1128/AEM.01541-09 pmid: 19801464
27 Niu G L, Zhang J J, Zhao S, Liu H, Boon N, Zhou N Y. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environmental Pollution, 2009, 157(3): 763–771
https://doi.org/10.1016/j.envpol.2008.11.024 pmid: 19108939
28 Laha S, Petrova K P. Biodegradation of 4-nitrophenol by indigenous microbial populations in Everglades soils. Biodegradation, 1997, 8(5): 349–356 
https://doi.org/10.1023/A:1008285717595 pmid: 15765614
29 Spain J C, Van Veld P A. Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum, and chemical structure. Applied and Environmental Microbiology, 1983, 45(2): 428–435
pmid: 16346193
30 Li Z J, Wei C H, Ren Y, Liang S Z. Growth characteristics and activities of nitrobenzene anaerobic biodegradation strains. Environmental Science, 1999, 20(5): 20–24 (in Chinese)
https://doi.org/10.13227/j.hjkx.1999.05.005 
31 Lu G L, Guo G L, Wang S J, Gu Q B, Li F S. Screening and biodegradation of anaerobic microorganisms for nitrobenzene in water.Jo urnal of Agro-Environment Science, 2 010, 29(3): 556–562 (in Chinese)
32 Li D, Yang M, Li Z L, Qi R, He J Z, Liu H J. Change of bacterial communities in sediments along Songhua River in Northeastern China after a nitrobenzene pollution event. FEMS Microbiology Ecology, 2008, 65(3): 494–503
https://doi.org/10.1111/j.1574-6941.2008.00540.x pmid: 18616580
33 Cai B C, Gao S X, Xiao L, Shao Y, Kong D Y, Wang L S. Screening of an effective nitrobenzene degrading strain and its biodegradation characteristics. Environmental Science and Technology, 2003, 26(4): 1–2 (in Chinese)
34 Liu L, Jiang C Y, Liu X Y, Wu J F, Han J G, Liu S J. Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environmental Microbiology, 2007, 9(2): 465–473
https://doi.org/10.1111/j.1462-2920.2006.01163.x pmid: 17222144
35 Xiao Y, Wu J F, Liu H, Wang S J, Liu S J, Zhou N Y. Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73. Applied Microbiology and Biotechnology, 2006, 73(1): 166–171
https://doi.org/10.1007/s00253-006-0441-3 pmid: 16642329
[1] FSE-17112-OF-CXQ_suppl_1 Download
[1] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[2] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[3] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[4] Ouchen Cai, Yuanxiao Xiong, Haijun Yang, Jinyong Liu, Hui Wang. Phosphorus transformation under the influence of aluminum, organic carbon, and dissolved oxygen at the water-sediment interface: A simulative study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 50-.
[5] Fang Zhang, Hao Zhang, Ying Yuan, Dun Liu, Chenyu Zhu, Di Zheng, Guanghe Li, Yuquan Wei, Dan Sun. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network[J]. Front. Environ. Sci. Eng., 2020, 14(2): 28-.
[6] Kun Li, Min Yang, Jianfeng Peng, Ruiping Liu, Tista Prasai Joshi, Yaohui Bai, Huijuan Liu. Rapid control of black and odorous substances from heavily-polluted sediment by oxidation: Efficiency and effects[J]. Front. Environ. Sci. Eng., 2019, 13(6): 87-.
[7] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[8] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[9] Yongsheng Zhao, Lin Lin, Mei Hong. Nitrobenzene contamination of groundwater in a petrochemical industry site[J]. Front. Environ. Sci. Eng., 2019, 13(2): 29-.
[10] Wanqi Qi, Weiying Li, Junpeng Zhang, Xuan Wu, Jie Zhang, Wei Zhang. Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 15-.
[11] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[12] Qian Wang, Qionghua Zhang, Mawuli Dzakpasu, Nini Chang, Xiaochang Wang. Transferral of HMs pollution from road-deposited sediments to stormwater runoff during transport processes[J]. Front. Environ. Sci. Eng., 2019, 13(1): 13-.
[13] Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li. Effect of nitrobenzene on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate organic wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 6-.
[14] Qiang Li, Xiong Xu, Yaoyao Fang, Ruiyang Xiao, Donghong Wang, Wenjue Zhong. The temporal changes of the concentration level of typical toxic organics in the river sediments around Beijing[J]. Front. Environ. Sci. Eng., 2018, 12(6): 8-.
[15] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed