Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (2) : 294-300    https://doi.org/10.1007/s11783-013-0486-3
RESEARCH ARTICLE
Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit
Hongtao ZHU1(), Wenna LI1,2
1. School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; 2. Tianjin Guangyao Dongfang Property & Investment Co. Ltd., Tianjin 300450, China
 Download: PDF(320 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Forward osmotic membrane bioreactor is an emerging technology that combines the advantages of forward osmosis and conventional membrane bioreactor. In this paper, bisphenol A removal by using a forward osmotic membrane bioreactor and a conventional membrane bioreactor that shared one biologic reactor was studied. The total removal rate of bisphenol A by the conventional membrane bioreactor and forward osmotic membrane bioreactor was as high as 93.9% and 98%, respectively. Biodegradation plays a dominant role in the total removal of bisphenol A in both processes. In comparison of membrane rejection, the forward osmosis membrane can remove approximately 70% bisphenol A from the feed, much higher than that of the microfiltration membrane (below 10%). Forward osmosis membrane bioreactor should be operated with its BPA loading rate under 0.08 mg·g-1·d-1 to guarantee the effluent bisphenol A concentration less than10 μg·L-1.

Keywords forward osmosis      membrane bioreactor      bisphenol A      microfiltration     
Corresponding Author(s): ZHU Hongtao,Email:zhuhongtao@bjfu.edu.cn   
Issue Date: 01 April 2013
 Cite this article:   
Hongtao ZHU,Wenna LI. Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit[J]. Front Envir Sci Eng, 2013, 7(2): 294-300.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0486-3
https://academic.hep.com.cn/fese/EN/Y2013/V7/I2/294
Fig.1  Setup of FO-MBR and MF-MBR that share one bio-reactor
Fig.2  Biodegradation efficiency of BPA (sludge supernatant vs. influent) under different HRTs. The average degradation rate value (with the first two days of data abandoned in each HRT test) of HRT of 4, 8, and 12 h is 63.94%, 84.61%, and 91.91%, respectively.
Fig.3  The variations of (a) MLSS and (b) BPA sludge loading with the operation time
Fig.4  Variation of BPA concentration with time in permeates of the microfiltration membrane in MBR. Removal efficiency of BPA was also calculated based on the BPA concentrations in the sludge supernatant and the membrane permeate
Fig.5  Transformation of the “convection and adsorption” mode (a) to the “solubility-diffusion” mode (b) when membrane fouling occurs
Fig.6  Variation of BPA concentration with time in the permeates of FO membrane in OMBR. The removal efficiency of BPA was also calculated based on the BPA concentrations in the sludge supernatant and the membrane permeate
Fig.7  The flux variation of forward osmosis membrane with time
Fig.8  Salt accumulation in the reactor over the 30-day operation. The salt concentration is expressed as the equivalent NaCl concentration calculated from the conductivity
1 Silva C P, Otero M, Esteves V. Processes for the elimination of estrogenic steroid hormones from water: a review. Environmental Pollution , 2012, 165: 38–58
doi: 10.1016/j.envpol.2012.02.002 pmid:22402263
2 Sipma J, Osuna B, Collado N, Monclús H, Ferrero G, Comas J, Rodrigues-Roda I. Comparison of removal of pharmaceuticals in MBR and activated sludge systems. Desalination , 2010, 250(2): 653–659
doi: 10.1016/j.desal.2009.06.073
3 Bertanza G, Pedrazzani R, Dal Grande M, Papa M, Zambarda V, Montani C, Steimberg N, Mazzoleni G, Di Lorenzo D. Effect of biological and chemical oxidation on the removal of estrogenic compounds (NP and BPA) from wastewater: an integrated assessment procedure. Water Research , 2011, 45(8): 2473–2484
doi: 10.1016/j.watres.2011.01.026 pmid:21420711
4 Reif R, Suárez S, Omil F, Lema J M. Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage. Desalination , 2008, 221(1-3): 511–517
doi: 10.1016/j.desal.2007.01.111
5 Abegglen C, Joss A, McArdell C S, Fink G, Schlüsener M P, Ternes T A, Siegrist H. The fate of selected micropollutants in a single-house MBR. Water Research , 2009, 43(7): 2036–2046
doi: 10.1016/j.watres.2009.02.005 pmid:19269669
6 Tambosi J L, de Sena R F, Favier M, Gebhardt W, José H J, Schr?der H F, de Fátima Peralta Muniz Moreira R. Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes. Desalination , 2010, 261(1-2): 148–156
doi: 10.1016/j.desal.2010.05.014
7 Radjenovi? J, Petrovi? M, Barceló D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research , 2009, 43(3): 831–841
doi: 10.1016/j.watres.2008.11.043 pmid:19091371
8 Bo L, Urase T, Wang X. Biodegradation of trace pharmaceutical substances in wastewater by a membrane bioreactor. Frontiers of Environmental Science & Engineering in China , 2009, 3(2): 236–240
doi: 10.1007/s11783-009-0004-9
9 Hai F I, Li X, Price W E, Nghiem L D. Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions. Bioresource Technology , 2011, 102(22): 10386–10390
doi: 10.1016/j.biortech.2011.09.019 pmid:21963248
10 Hai F I, Tessmer K, Nguyen L N, Kang J, Price W E, Nghiem L D. Removal of micropollutants by membrane bioreactor under temperature variation. Journal of Membrane Science , 2011, 383(1-2): 144–151
doi: 10.1016/j.memsci.2011.08.047
11 Pollice A, Laera G, Cassano D, Diomede S, Pinto A, Lopez A, Mascolo G. Removal of nalidixic acid and its degradation products by an integrated MBR-ozonation system. Journal of Hazardous Materials , 2012, 203-204: 46–52
doi: 10.1016/j.jhazmat.2011.11.072 pmid:22206976
12 Li X, Hai F I, Nghiem L D. Simultaneous activated carbon adsorption within a membrane bioreactor for an enhanced micropollutant removal. Bioresource Technology , 2011, 102(9): 5319–5324
doi: 10.1016/j.biortech.2010.11.070 pmid:21145232
13 Dolar D, Gros M, Rodriguez-Mozaz S, Moreno J, Comas J, Rodriguez-Roda I, Barceló D. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. Journal of Hazardous Materials , 2012, 239- 240: 64–69
doi: 10.1016/j.jhazmat.2012.03.029 pmid:22476093
14 Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science , 2006, 281(1-2): 70–87
doi: 10.1016/j.memsci.2006.05.048
15 Chung T S, Zhang S, Wang K Y, Su J, Ling M M. Forward osmosis processes: Yesterday, today and tomorrow. Desalination , 2012, 287: 78–81
doi: 10.1016/j.desal.2010.12.019
16 Zhao S, Zou L, Tang C Y, Mulcahy D. Recent developments in forward osmosis: Opportunies and challenges. Journal of Membrane Science , 2012, 396: 1–21
doi: 10.1016/j.memsci.2011.12.023
17 Xie M, Nghiem L D, Price W E, Elimelech M. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Water Research , 2012, 46(8): 2683–2692
doi: 10.1016/j.watres.2012.02.023 pmid:22402269
18 Valladares Linares R, Yangali-Quintanilla V, Li Z, Amy G. Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Research , 2011, 45(20): 6737–6744
doi: 10.1016/j.watres.2011.10.037 pmid:22055122
19 Xie M, Price W E, Nghiem L D. Rejection of pharmaceutically active compounds by forward osmosis: role of solution pH and membrane orientation. Separation and Purification Technology , 2012, 93: 107–114
doi: 10.1016/j.seppur.2012.03.030
20 Jin X, Shan J, Wang C, Wei J, Tang C Y. Rejection of pharmaceuticals by forward osmosis membranes. Journal of Hazardous Materials , 2012, 227-228: 55–61 .
doi: 10.1016/j.jhazmat.2012.04.077 pmid:21237563
21 Achilli A, Cath T Y, Marchand E A, Childress A E. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination , 2009, 239(1-3): 10–21
doi: 10.1016/j.desal.2008.02.022
22 Cornelissen E R, Harmsen D, de Korte K F, Ruiken C J, Qin J-J, Oo H, Wessels L P. Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science , 2008, 319(1-2): 158–168
doi: 10.1016/j.memsci.2008.03.048
23 Xiao D, Tang C Y, Zhang J, Lay W C L, Wang R, Fane A G. Modeling salt accumulation in osmotic membrane bioreactors: implications for FO membrane selection and system operation. Journal of Membrane Science , 2011, 366(1-2): 314–324
doi: 10.1016/j.memsci.2010.10.023
24 Lay W C L, Zhang Q, Zhang J, McDougald D, Tang C, Wang R, Liu Y, Fane A G. Study of integration of forward osmosis and biological process: membrane performance under elevated salt environment. Desalination , 2011, 283: 123–130
doi: 10.1016/j.desal.2011.01.036
25 Zhang H, Ma Y, Jiang T, Zhang G, Yang F. Influence of activated sludge properties on flux behavior in osmosis membrane bioreactor (OMBR). Journal of Membrane Science , 2012, 390-391: 270–276
doi: 10.1016/j.memsci.2011.11.048
26 Yap W J, Zhang J, Lay W C L, Cao B, Fane A G, Liu Y. State of the art of osmotic membrane bioreactors for water reclamation. Bioresource Technology, 2012, 122: 217–222
27 Alturki A, McDonald J, Khan S J, Hai F I, Price W E, Nghiem L D. Performance of a novel osmotic membrane bioreactor (OMBR) system: flux stability and removal of trace organics. Bioresource Technology , 2012, 113: 201–206
doi: 10.1016/j.biortech.2012.01.082 pmid:22342586
28 Chen J, Huang X, Lee D. Bisphenol A removal by a membrane bioreactor. Process Biochemistry , 2008, 43(4): 451–456
doi: 10.1016/j.procbio.2008.01.001
29 Clara M, Strenn B, Saracevic E, Kreuzinger N. Adsorption of bisphenol-A, 17 beta-estradiole and 17 alpha-ethinylestradiole to sewage sludge. Chemosphere , 2004, 56(9): 843–851
doi: 10.1016/j.chemosphere.2004.04.048 pmid:15261530
30 Dong B, Chu H, Wang L, Xia S, Gao N. The removal of bisphenol A by hollow fiber microfiltration membrane. Desalination , 2010, 250(2): 693–697
doi: 10.1016/j.desal.2009.05.022
31 Hancock N T, Xu P, Heil D M, Bellona C, Cath T Y. Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis. Environmental Science & Technology , 2011, 45(19): 8483–8490
doi: 10.1021/es201654k pmid:21838294
[1] Jiandong Lu, Shijie You, Xiuheng Wang. Forward osmosis coupled with lime-soda ash softening for volume minimization of reverse osmosis concentrate and CaCO3 recovery: A case study on the coal chemical industry[J]. Front. Environ. Sci. Eng., 2021, 15(1): 9-.
[2] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[3] Wenchao Xue, May Zaw, Xiaochan An, Yunxia Hu, Allan Sriratana Tabucanon. Sea salt bittern-driven forward osmosis for nutrient recovery from black water: A dual waste-to-resource innovation via the osmotic membrane process[J]. Front. Environ. Sci. Eng., 2020, 14(2): 32-.
[4] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[5] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[6] Gang Yi, Xinfei Fan, Xie Quan, Shuo Chen, Hongtao Yu. Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(2): 23-.
[7] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[8] Xue Shen, Lei Lu, Baoyu Gao, Xing Xu, Qinyan Yue. Development of combined coagulation-hydrolysis acidification-dynamic membrane bioreactor system for treatment of oilfield polymer-flooding wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 9-.
[9] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[10] Taro Miyoshi, Thanh Phong Nguyen, Terumi Tsumuraya, Hiromu Tanaka, Toru Morita, Hiroki Itokawa, Toshikazu Hashimoto. Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane[J]. Front. Environ. Sci. Eng., 2018, 12(3): 1-.
[11] Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6-.
[12] Xiaoyan Song, Rui Liu, Lujun Chen, Tomoki Kawagishi. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Front. Environ. Sci. Eng., 2017, 11(2): 11-.
[13] Qingbin Guo, Sheng Chang. Tetra-detector size exclusion chromatography characterization of molecular and solution properties of soluble microbial polysaccharides from an anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(2): 16-.
[14] Yong YU,Laosheng WU. Determination and occurrence of endocrine disrupting compounds, pharmaceuticals and personal care products in fish (Morone saxatilis)[J]. Front. Environ. Sci. Eng., 2015, 9(3): 475-481.
[15] Liping LIANG,Jing ZHANG,Pian FENG,Cong LI,Yuying HUANG,Bingzhi DONG,Lina LI,Xiaohong GUAN. Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies[J]. Front. Environ. Sci. Eng., 2015, 9(1): 16-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed