Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (4) : 531-538    https://doi.org/10.1007/s11783-013-0506-3
RESEARCH ARTICLE
Removal of Zn2+ from aqueous solution by biomass of Agaricus bisporus
Feng XUE1, Beicheng XIA1(), Rongrong YING2, Shili SHEN1, Peng ZHAO1
1. School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; 2. Nanjing Institute of Environmental Sciences, MEP, Nanjing 210042, China
 Download: PDF(267 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biosorption of Zn2+ from aqueous solutions by biomass of Agaricus bisporus was investigated. The removal rates of Zn2+ by A. bisporus under different parameters (e.g., solution pH, bio-sorbent dosage and initial Zn2+ concentration) were studied. The inhibition of A. bisporus’s biosorption by anionic ligands EDTA (Ethylene Diamine Tetraacetic Acid), acetate and citrate) implied that EDTA and citrate might be used as eluting reagents. Regular and simultaneous solution pH change and light metal ions release after biosorption indicated that an ion exchange mechanism was involved. From FT-IR (Fourier Transform Infrared) spectroscopy, the main functional groups participated in biosorption were found. Biosorption of Zn2+ by A. bisporus could be well described by the Freundlich and Langmuir models. In conclusion, the biomass of A. bisporus showed high potential for the treatment of wastewater containing Zn2+.

Keywords biosorption      Agaricus bisporus      zinc      ion exchange      FT-IR      isotherms     
Corresponding Author(s): XIA Beicheng,Email:xiabch@mail.sysu.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Feng XUE,Beicheng XIA,Rongrong YING, et al. Removal of Zn2+ from aqueous solution by biomass of Agaricus bisporus[J]. Front Envir Sci Eng, 2013, 7(4): 531-538.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0506-3
https://academic.hep.com.cn/fese/EN/Y2013/V7/I4/531
Fig.1  Effect of solution pH on the biosorption of Zn (initial concentration 100 mg·L) by
Fig.2  Effect of bio-sorbent dosages on the biosorption of Zn (initial concentration 100 mg·L) by
Fig.3  Effect of initial Zn concentration on the biosorption of Zn by
Fig.4  Effect of Co-anionic ligands on the biosorption of Zn by
Fig.5  Changes of solution pH after biosorption of Zn by
Fig.6  Light metal ions released after the biosorption of Zn by
Fig.7  The correlationship between Zn adsorbed and the total amount of light metal ions released by (The total amount of light metal ions released was calculated according to the charge balance. (Sum= Na /2+ K /2+ Mg + Ca )
A. bisporusZn-loaded A. bisporusassignment
34223442hydroxyl group
15451551aromatic nitro group
1406-carboxylate group
-1263epoxypropane C-O-C
Tab.1  FTIR spectra studies of before and after biosorption
Fig.8  FT-IR spectra of . (a) before biosorption, (b) after biosorption
isotherm equationsParameters
LangmuirQ0 (mg·g-1)b (L·mg-1)R2
6.8970.3440.992
FreundlichKf (mg·g1-(1/n)·L1/n) ·g-1)1/nR2
2.5700.2160.995
Dubinin-Radushkevichqm (mg·g-1)β (mol2·kJ-2)R2
35.8101.00E-080.843
TemkinAT (L·g-1)bTR2
1.4673976.8410.969
Tab.2  Calculated constants and correlation coefficients for various adsorption models
Bio-sorbentKfreference
Sargassum0.41[26]
S. intermedia1.03[27]
L. minor1.06[28]
P. stratiots0.25[29]
Botrytis cinerea1.13[30]
Plain Ca-alginate bead0.51[31]
A. bisporus2.57this work
Tab.3  Maximum capacity, for biosorption of Zn by various bio-sorbents
1 Lai Y L, Annadurai G, Huang F C, Lee J F. Biosorption of Zn(II) on the different Ca-alginate beads from aqueous solution. Bioresource Technology , 2008, 99(14): 6480–6487
doi: 10.1016/j.biortech.2007.11.041 pmid:18248987
2 Hsu T C, Yu C C, Yeh C M. Adsorption of Cu2+ from water using raw and modified coal fly ashes. Fuel , 2008, 87(7): 1355–1359
doi: 10.1016/j.fuel.2007.05.055
3 Iqbal M, Saeed A. Removal of heavy metals from contaminated water by petiolar felt-sheath of palm. Environmental Technology , 2002, 23(10): 1091–1098
doi: 10.1080/09593332308618338 pmid:12465835
4 Yan G, Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research , 2003, 37(18): 4486–4496
doi: 10.1016/S0043-1354(03)00409-3 pmid:14511719
5 Tewari N, Vasudevan P, Guha B K. Study on biosorption of Cr(VI) by Mucor hiemalis. Biochemical Engineering Journal , 2005, 23(2): 185–192
doi: 10.1016/j.bej.2005.01.011
6 Miretzky P, Cirelli A F. Hg(II) removal from water by chitosan and chitosan derivatives: a review. Journal of Hazardous Materials , 2009, 167(1-3): 10–23
doi: 10.1016/j.jhazmat.2009.01.060 pmid:19232467
7 Reddy D H K, Seshaiah K, Reddy A V R, Rao M M, Wang M C. Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies. Journal of Hazardous Materials , 2010, 174(1-3): 831–838
doi: 10.1016/j.jhazmat.2009.09.128 pmid:19853374
8 Sheng P X, Ting Y P, Chen J P. Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the marine alga Sargassum sp. in single- and multiple-metal systems. Industrial & Engineering Chemistry Research , 2007, 46(8): 2438–2444
doi: 10.1021/ie0615786
9 Agouborde L, Navia R. Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes. Journal of Hazardous Materials , 2009, 167(1-3): 536–544
doi: 10.1016/j.jhazmat.2009.01.027 pmid:19188023
10 Muraleedharan T R, Venkobachar C, Leela I. Investigations of fungal fruiting bodies as biosorbents for the removal of heavy metals from industrial processing streams. Separation Science and Technology , 1994, 29(14): 1893–1903
doi: 10.1080/01496399408002178
11 Ertugay N, Bayhan Y K. The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination , 2010, 255(1-3): 137–142
doi: 10.1016/j.desal.2010.01.002
12 Ertugay N, Bayhan Y K. Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus. Journal of Hazardous Materials , 2008, 154(1-3): 432–439
doi: 10.1016/j.jhazmat.2007.10.070 pmid:18078714
13 Vimala R, Das N. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. Journal of Hazardous Materials , 2009, 168(1): 376–382
doi: 10.1016/j.jhazmat.2009.02.062 pmid:19285798
14 Schiewer S, Balaria A. Biosorption of Pb2+ by original and protonated citrus peels: Equilibrium, kinetics, and mechanism. Chemical Engineering Journal , 2009, 146(2): 211–219
doi: 10.1016/j.cej.2008.05.034
15 Anna W K, Roman S, Szymon M. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination , 2011, 265(1-3): 126–134
16 Crisafully R, Milhome M A L, Cavalcante R M, Silveira E R, De Keukeleire D, Nascimento R F. Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresource Technology , 2008, 99(10): 4515–4519
doi: 10.1016/j.biortech.2007.08.041 pmid:17964147
17 Ofomaja A E, Naidoo E B, Modise S J. Kinetic and pseudo-second-order modeling of lead biosorption onto pine cone powder. Industrial and Engineering Chemistry Research , 2010, 49(6): 2562–2572
doi: 10.1021/ie901150x
18 Matheickal J T, Yu Q, Woodburn G M. Biosorption of cadmium(II) from aqueous solutions by pre-treated biomass of marine alga DurvillAea potatorum. Water Research , 1999, 33(2): 335–342
doi: 10.1016/S0043-1354(98)00237-1
19 Vijayaraghavan K, Teo T T, Balasubramanian R, Joshi U M. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff. Journal of Hazardous Materials , 2009, 164(2-3): 1019–1023
doi: 10.1016/j.jhazmat.2008.08.105 pmid:18926627
20 Esposito A, Pagnanelli F, Lodi A, Solisio C, Vegliò F. Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH biomass concentrations. Hydrometallurgy , 2001, 60(2): 129–141
doi: 10.1016/S0304-386X(00)00195-X
21 Mohan D, Singh K P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Research , 2002, 36(9): 2304–2318
doi: 10.1016/S0043-1354(01)00447-X pmid:12108723
22 Chen J P, Wang L K, Yang L, Lim S F. Emerging Biosorption, Adsorption, Ion Exchange, and Membrane Technologies. Handbook of Environmental Engineering . Totowa: Humana Press, 2007, 5: 367–390
23 Chen J P, Yang L. Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis. Langmuir , 2006, 22(21): 8906–8914
doi: 10.1021/la060770+ pmid:17014134
24 Mohapatra M, Rout K, Mohapatra B K, Anand S. Sorption behavior of Pb(II) and Cd(II) on iron ore slime and characterization of metal ion loaded sorbent. Journal of Hazardous Materials , 2009, 166(2-3): 1506–1513
doi: 10.1016/j.jhazmat.2008.12.081 pmid:19185424
25 Kim Y, Kim C, Choi I, Rengaraj S, Yi J. Arsenic removal using mesoporous alumina prepared via a templating method. Environmental Science and Technology , 2004, 38(3): 924–931
doi: 10.1021/es0346431 pmid:14968884
26 Luna A S, Costa A L H, da Costa A C, Henriques C A. Competitive biosorption of cadmium(II) and zinc(II) ions from binary systems by Sargassum filipendula. Bioresource Technology , 2010, 101(14): 5104–5111
doi: 10.1016/j.biortech.2010.01.138 pmid:20172715
27 Miretzky P, Saralegui A, Fernández Cirelli A. Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere , 2006, 62(2): 247–254
doi: 10.1016/j.chemosphere.2005.05.010 pmid:15990152
28 Sa? Y, Kaya A, Kutsal T. The simultaneous biosorption of Cu and Zn on Rhizopus arrhizus: application of the adsorption models. Hydrometallurgy , 1998, 50(3): 297–314
doi: 10.1016/S0304-386X(98)00065-6
29 Tunali S, Akar T. Zn(II) biosorption properties of Botrytis cinerea biomass. Journal of Hazardous Materials , 2006, 131(1-3): 137–145
doi: 10.1016/j.jhazmat.2005.09.024 pmid:16239066
30 ?engil I A, Ozacar M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Journal of Hazardous Materials , 2009, 166(2-3): 1488–1494
doi: 10.1016/j.jhazmat.2008.12.071 pmid:19188018
31 MalkocE, NuhogluY, DundarM. Adsorption of chromium(VI) on pomace—an olive oil industry waste: batch and column studies. Journal of Hazardous Materials , 2006, 138(1): 142–151
doi: 10.1016/j.jhazmat.2006.05.051 pmid:16844293
[1] Chaojin Jiang, Xiaoqian Jiang, Lixun Zhang, Yuntao Guan. Enhanced debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by zero-valent zinc with ascorbic acid[J]. Front. Environ. Sci. Eng., 2020, 14(3): 47-.
[2] Tong Li, Ke Xiao, Bo Yang, Guilong Peng, Fenglei Liu, Liyan Tao, Siyuan Chen, Haoran Wei, Gang Yu, Shubo Deng. Recovery of Ni(II) from real electroplating wastewater using fixed-bed resin adsorption and subsequent electrodeposition[J]. Front. Environ. Sci. Eng., 2019, 13(6): 91-.
[3] Christine C. Nguyen, Cody N. Hugie, Molly L. Kile, Tala Navab-Daneshmand. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 46-.
[4] Qinqin Liu, Miao Li, Fawang Zhang, Hechun Yu, Quan Zhang, Xiang Liu. The removal of trimethoprim and sulfamethoxazole by a high infiltration rate artificial composite soil treatment system[J]. Front. Environ. Sci. Eng., 2017, 11(2): 12-.
[5] Ryan C. SMITH,Jinze LI,Surapol PADUNGTHON,Arup K. SENGUPTA. Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for sorption/desorption of target ligands[J]. Front. Environ. Sci. Eng., 2015, 9(5): 929-938.
[6] Zhaoyi SHEN,Zhuo CHEN,Zhen HOU,Tingting LI,Xiaoxia LU. Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms[J]. Front. Environ. Sci. Eng., 2015, 9(5): 912-918.
[7] Guangqing LIU,Mengwei XUE,Jingyi HUANG,Huchuan WANG,Yuming ZHOU,Qingzhao YAO,Lei LING,Ke CAO,Yahui LIU,Yunyun BU,Yiyi CHEN,Wendao WU,Wei SUN. Preparation and application of a phosphorous free and non-nitrogen scale inhibitor in industrial cooling water systems[J]. Front. Environ. Sci. Eng., 2015, 9(3): 545-553.
[8] Bhagwanjee JHA,Nevin KOSHY,Devendra Narain SINGH. Establishing two-stage interaction between fly ash and NaOH by X-ray and infrared analyses[J]. Front. Environ. Sci. Eng., 2015, 9(2): 216-221.
[9] Jing REN,Nan LI,Lin ZHAO,Nanqi REN. Enhanced adsorption of phosphate by loading nanosized ferric oxyhydroxide on anion resin[J]. Front.Environ.Sci.Eng., 2014, 8(4): 531-538.
[10] XIE Bangmi,ZUO Jiane,GAN Lili,LIU Fenglin,WANG Kaijun. Cation exchange resin supported nanoscale zero-valent iron for removal of phosphorus in rainwater runoff[J]. Front.Environ.Sci.Eng., 2014, 8(3): 463-470.
[11] Yifei SUN, Xin FU, Wei QIAO, Wei WANG, Tianle ZHU, Xinghua LI. Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported copper or zinc[J]. Front Envir Sci Eng, 2013, 7(6): 827-832.
[12] Qing ZHOU, Mengqiao WANG, Aimin LI, Chendong SHUANG, Mancheng ZHANG, Xiaohan LIU, Liuyan WU. Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption of both tetracycline and humic acid[J]. Front Envir Sci Eng, 2013, 7(3): 412-419.
[13] Tao PAN, Suizhou REN, Jun GUO, Meiying XU, Guoping SUN. Biosorption and biotransformation of crystal violet by Aeromonas hydrophila DN322p[J]. Front Envir Sci Eng, 2013, 7(2): 185-190.
[14] Yan MA, Naiyun GAO, Wenhai CHU, Cong LI. Removal of phenol by powdered activated carbon adsorption[J]. Front Envir Sci Eng, 2013, 7(2): 158-165.
[15] Biwu CHU, Jiming HAO, Junhua LI, Hideto TAKEKAWA, Kun WANG, Jingkun JIANG. Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation[J]. Front Envir Sci Eng, 2013, 7(1): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed