Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2009, Vol. 3 Issue (1) : 106-111    https://doi.org/10.1007/s11783-009-0005-8
RESEARCH ARTICLE
Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process
Hongxun HOU1,2, Shuying WANG1(), Yongzhen PENG1, Zhiguo YUAN3, Fangfang YIN1, Wang GAN2
1. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, China; 2. Anhui Guozhen Environmental Protection Science and Technology Co., Ltd., Hefei 230088, China; 3. Advanced Wastewater Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
 Download: PDF(130 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The anaerobic-anoxic oxidation ditch (A2/O OD) process is popularly used to eliminate nutrients from domestic wastewater. In order to identify the existence of denitrifying phosphorus removing bacteria (DPB), evaluate the contribution of DPB to biological nutrient removal, and enhance the denitrifying phosphorus removal in the A2/O OD process, a pilot-scale A2/O OD plant (375 L) was conducted. At the same time batch tests using sequence batch reactors (12 L and 4 L) were operated to reveal the significance of anoxic phosphorus removal. The results indicated that: The average removal efficiency of COD, NH4+, PO43-, and TN were 88.2%, 92.6%, 87.8%, and 73.1%, respectively, when the steady state of the pilot-scale A2/O OD plant was reached during 31-73 d, demonstrating a good denitrifying phosphorus removal performance. Phosphorus uptake took place in the anoxic zone by poly-phosphorus accumulating organisms NO2- could be used as electron receptors in denitrifying phosphorus removal, and the phosphorus uptake rate with NO2- as the electron receptor was higher than that with NO3- when the initial concentration of either NO2- or NO3- was 40 mg/L.

Keywords wastewater treatment      anaerobic-anoxic (A2/O)      oxidation ditch (OD)      biological phosphorus removal      denitrifying phosphorus removal     
Corresponding Author(s): WANG Shuying,Email:wsy@bjut.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Hongxun HOU,Shuying WANG,Yongzhen PENG, et al. Anoxic phosphorus removal in a pilot scale anaerobic-anoxic oxidation ditch process[J]. Front Envir Sci Eng Chin, 2009, 3(1): 106-111.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0005-8
https://academic.hep.com.cn/fese/EN/Y2009/V3/I1/106
Fig.1  Schematic diagram of OD system
parameterCODNH4+PO43-pH
average288.054.74.867.4
min/max196.2/514.546.9/63.73.18/8.377.2/7.7
Tab.1  Major characteristics of the influent (mg·L, except pH)
Fig.2  Profiles of , , , , and COD concentrations in the pilot-scale A/O OD system
Fig.3  Profiles of concentration in the pilot-scale A/O OD system
Fig.4  Profiles of , , and COD concentrations of batch test I
Fig.5  Profiles of P uptake under aerobic and anoxic conditions with 3 different types of electron acceptors after P released
1 Tchobanoglous G, Burton F L, Stensel H D. Wastewater Engineering: Treatment and Reuse. 4th ed. New York: Metcalf & Eddy Inc., McGraw-Hill Science Engineering, 2002
2 Janssen P M J, Meinema K, Van der Roest H F. Biological Phosphorus Removal Manual for Design and Operation. London: IWA Publishing of Alliance House, 2002
3 Ahn J, Daidou T, Tsuneda S, Hirata A. Metabolic behavior of denitrifying phosphate-accumulating organisms under nitrate and nitrite electron acceptor conditions. J. Biosci. Bioeng. , 2001, 92(5): 442-446
doi: 10.1263/jbb.92.442
4 Meinhold J, Arnold E, Isaacs S. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge. Water Res. , 1999, 33(8): 1871-1883
doi: 10.1016/S0043-1354(98)00411-4
5 Zeng R J, Saunders A M, Yuan Z, Blackall L L, Keller J. Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. Biotechnol. Bioeng ., 2003, 83(2): 140-149
doi: 10.1002/bit.10652
6 Ostgaard K, Christensson M, Lie E, J?nsson K, Welander T. Anoxic biological phosphorus removal in a full-scale UCT process. Water Res ., 1997, 31(11): 2719-2726
doi: 10.1016/S0043-1354(97)00125-5
7 Kuba T, Wachtmeister A, van Loosdrecht M C M, Heijnen J J. Effect of nitrate on phosphorus release in biological phosphorus removal systems. Water Sci. Technol. , 1994, 30(6): 263-269
8 Peng Y, Wang X, Li B. Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the A2O process. Desalination , 2006, 189(1-3): 155-164
doi: 10.1016/j.desal.2005.06.023
9 Peng Y, Wang X, Wu W, Li J, Fan J. Optimisation of anaerobic/anoxic/oxic process to improve performance and reduce operating costs. J. Chem. Technol. Biotechnol. , 2006, 81(8): 1391-1397
doi: 10.1002/jctb.1573
10 Wang Y, Pan M, Yan M, Peng Y, Wang S. Characteristics of anoxic phosphors removal in sequence batch reactor. J. Environ. Sci. , 2007, 19(7): 776-782
doi: 10.1016/S1001-0742(07)60130-2
11 Barker P S, Dold P L. Denitrification behaviour in biological excess phosphorus removal activated sludge systems. Water Res. , 1996, 30(4): 769-780
doi: 10.1016/0043-1354(95)00217-0
12 Kerrn-Jespersen J P, Henze M. Biological phosphorus uptake under anoxic and aerobic conditions. Water Res. , 1993, 27(4): 617-624
doi: 10.1016/0043-1354(93)90171-D
13 Hu J Y, Ong S L, Ng W J, Lu F, Fan X J. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. Water Res. , 2003, 37(14): 3463-3471
doi: 10.1016/S0043-1354(03)00205-7
14 Kuba T, van Loosdrecht M C M, Heijnen J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Res. , 1996, 30(7): 1702-1710
doi: 10.1016/0043-1354(96)00050-4
15 Liu H, Sun L, Xia S. An efficient DPB utilization process: The modified A2N process. Biochem. Eng. J. , 2008, 38(2): 158-163
doi: 10.1016/j.bej.2007.06.016
16 Gilda C, Paulo C L, Adrian O, Maria A M R. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure. Water Res. , 2007,41(19): 4383-4396
doi: 10.1016/j.watres.2007.06.065
17 APHA. Standard Methods for the Examination of Water and Wastewater. Washington,D C: American Public Health Association, 1995
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[3] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[4] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[5] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[6] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[7] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[8] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
[9] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[10] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[11] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[12] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[13] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[14] Dongliang Du, Chuanyi Zhang, Kuixia Zhao, Guangrong Sun, Siqi Zou, Limei Yuan, Shilong He. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 4-.
[15] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed