Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2010, Vol. 4 Issue (3) : 286-294    https://doi.org/10.1007/s11783-010-0025-4
Research articles
Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies
Qian YAO,Hua ZHANG,Jun WU,Liming SHAO,Pinjing HE,
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
 Download: PDF(250 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Batch biosorption experiments were conducted to remove Cr(III) from aqueous solutions using activated sludge from a sewage treatment plant. An investigation was conducted on the effects of the initial pH, contact time, temperature, and initial Cr(III) concentration in the biosorption process. The results revealed that the activated sludge exhibited the highest Cr(III) uptake capacity (120 mg·g−1) at 45°C, initial pH of 4, and initial Cr(III) concentration of 100 mg·L−1. The biosorption results obtained at various temperatures showed that the biosorption pattern accurately followed the Langmuir model. The calculated thermodynamic parameters, ΔGo (−0.8– −4.58 kJ·mol−1), ΔHo (15.6–44.4 kJ·mol−1), and ΔSo (0.06–0.15 kJ·mol−1·K−1) clearly indicated that the biosorption process was feasible, spontaneous, endothermic, and physical. The pseudo first-order and second-order kinetic models were adopted to describe the experimental data, which revealed that the Cr(III) biosorption process conformed to the second-order rate expression and the biosorption rate constants decreased with increasing Cr(III) concentration. The analysis of the values of biosorption activation energy (Ea = −7 kJ·mol−1) and the intra-particle diffusion model demonstrated that Cr(III) biosorption was film-diffusion-controlled.
Keywords activated sludge      biosorption      chromium      film diffusion      kinetics      thermodynamics      
Issue Date: 05 September 2010
 Cite this article:   
Qian YAO,Hua ZHANG,Jun WU, et al. Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies[J]. Front.Environ.Sci.Eng., 2010, 4(3): 286-294.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0025-4
https://academic.hep.com.cn/fese/EN/Y2010/V4/I3/286
Yun Y S, Park D, Park J M, Volesky B. Biosorptionof trivalent chromium on the brown seaweed biomass. Environmental Science & Technology, 2001, 35(21): 4353―4358

doi: 10.1021/es010866k
Febrianto J, Kosasih A N, Sunarso J, Ju Y H, Indraswati N, Ismadji S. Equilibrium and kinetic studiesin adsorption of heavy metals using biosorbent: a summary of recentstudies. Journal of Hazardous Materials, 2009, 162(2―3): 616―645

doi: 10.1016/j.jhazmat.2008.06.042
Hammaini A, González F, Ballester A, Blázquez M L, Mu?oz J A. Biosorption of heavy metals by activated sludge and their desorptioncharacteristics. Journal of EnvironmentalManagement, 2007, 84(4): 419―426

doi: 10.1016/j.jenvman.2006.06.015
Sari A, Mendil D, Tuzen M, Soylak M. Biosorption of Cd(II) and Cr(III) from aqueous solutionby moss (Hylocomium splendens) biomass: Equilibrium, kinetic and thermodynamicstudies. Chemical Engineering Journal, 2008, 144(1): 1―9

doi: 10.1016/j.cej.2007.12.020
Zubair A, Bhatti H N, Hanif M A, Shafqat F. Kinetic and equilibrium modeling for Cr(III) and Cr(VI)removal from aqueous solutions by citrus reticulata waste biomass. Water, Air, & Soil Pollution, 2008, 191: 305―318

doi: 10.1007/s11270-008-9626-y
Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba T F. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using driedmarine green macroalga Caulerpa lentillifera. Bioresource Technology, 2006, 97(18): 2321―2329
Aksu Z, A?ikel U, Kabasakal E, Tezer S. Equilibrium modeling of individual and simultaneous biosorptionof chromium(VI) and nickel(II) onto dried activated sludge. Water Research, 2002, 36(12): 3063―3073

doi: 10.1016/S0043-1354(01)00530-9
Luo S, Yuan L, Chai L, Min X, Wang Y, Fang Y, Wang P. Biosorptionbehaviors of Cu2+, Zn2+, Cd2+ and mixture by waste activatedsludge. Transactions of Nonferrous MetalsSociety of China, 2006, 16(6): 1431―1435

doi: 10.1016/S1003-6326(07)60033-8
Iddou A, Ouali M S. Waste-activatedsludge (WAS) as Cr(III) sorbent biosolid from wastewater effluent. Colloids and Surfaces. B, Biointerfaces, 2008, 66(2): 240―245

doi: 10.1016/j.colsurfb.2008.06.018
Li Y S, Liu C C, Chiou C S. Adsorption of Cr(III) from wastewaterby wine processing waste sludge. Journalof Colloid and Interface Science, 2004, 273(1): 95―101

doi: 10.1016/j.jcis.2003.12.051
Zhang Y, Banks C. A comparisonof the properties of polyurethane immobilized Sphagnum moss, seaweed,sunflower waste and maize for the biosorption of Cu, Pb, Zn and Niin continuous flow packed columns. WaterResearch, 2006, 40(4): 788―798

doi: 10.1016/j.watres.2005.12.011
K?l?? M, Keskin M E, Mazlum S, Mazlum N. Hg(II) and Pb(II) adsorptionon activated sludge biomass: Effective biosorption mechanism. International Journal of Mineral Processing, 2008, 87(1―2): 1―8
Gupta V K, Rastogi A. Biosorption of hexavalent chromium by rawand acid-treated green alga Oedogonium hatei from aqueous solutions. Journal of Hazardous Materials, 2009, 163(1): 396―402

doi: 10.1016/j.jhazmat.2008.06.104
Baral S S, Das S N, Rath P. Hexavalentchromium removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal, 2006, 31(3): 216―222

doi: 10.1016/j.bej.2006.08.003
Meena A K, Kadirvelu K, Mishraa G K, Rajagopal C, Nagar P N. Adsorptionof Pb(II) and Cd(II) metal ions from aqueous solutions by mustardhusk. Journal of Hazardous Materials, 2008, 150(3): 619―625

doi: 10.1016/j.jhazmat.2007.05.011
Lodeiro P, Barriada J L, Herrero R, Sastre de Vicente M E. The marine macroalga Cystoseira baccataas biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibriumstudies. Environmental Pollution, 2006, 142(2): 264―273

doi: 10.1016/j.envpol.2005.10.001
Blázquez G, Hernáinz F, Calero M, Martín-Lara M A, Tenorio G. Theeffect of pH on the biosorption of Cr (III) and Cr (VI) with olivestone. Chemical Engineering Journal, 2009, 148(2―3): 473―479
Kratochvil D, Pimentel P, Volesky B. Removal of trivalent andhexavalent chromium by seaweed biosorbent. Environmental Science & Technology, 1998, 32(18): 2693―2698

doi: 10.1021/es971073u
Benhammou A, Yaacoubi A, Nibou L, Tanouti B. Study of the removal of mercury(II) and chromium(VI)from aqueous solutions by Moroccan stevensite. Journal of Hazardous Materials, 2005, 117(2―3): 243―249
Guibal E, Jansson-Charrier M, Saucedo I, Le Cloirec P. Enhancement of metal ion sorption performances of chitosan:effect of the structure on the diffusion properties. Langmuir, 1995, 11(2): 591―598

doi: 10.1021/la00002a039
Webi T W, Chakravort R K. Pore and solid diffusion models for fixed bed adsorbers. AIChE Journal, 2004, 20(2): 228―238

doi: 10.1002/aic.690200204
Boyd G E, Adamson A W, Myers Jr. L S. The exchange adsorption ofions from aqueous solutions by organic zeolites. II. Kinetics. Journal of the American Chemical Society, 1947, 69(11): 2836―2848

doi: 10.1021/ja01203a066
El-Kamash A M, Zaki A A, Abed El Geleel M A. Modeling batch kinetics andthermodynamics of zinc and cadmium ions removal from waste solutionsusing synthetic zeolite A. Journal of HazardousMaterials, 2005, 127(1―3): 211―220
Kannan N, Sundaram M M. Kinetics and mechanism of removal of methylene blue by adsorptionon various carbons- a comparative study. Dyes and Pigments, 2001, 51(1): 25―40

doi: 10.1016/S0143-7208(01)00056-0
Chen H, Wang A. Adsorptioncharacteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgitecomposite. Journal of Hazardous Materials, 2009, 165(1―3): 223―231
Wan Ngah W S, Kamari A, Fatinathan S, Ng P W. Adsorption of chromium from aqueous solution using chitosanbeads. Adsorption, 2006, 12(4): 249―257

doi: 10.1007/s10450-006-0501-0
Akhtar N, Iqbal M, Zafar S I, Iqbal J. Biosorptioncharacteristics of unicellular green alga Chlorella sorokiniana immobilizedin loofa sponge for removal of Cr(III). Journal of Environmental Sciences (China), 2008, 20(2): 231―239

doi: 10.1016/S1001-0742(08)60036-4
Calfa B A, Torem M L. On the fundamentalsof Cr(III) removal from liquid streams by a bacterial strain. Minerals Engineering, 2008, 21(1): 48―54

doi: 10.1016/j.mineng.2007.08.001
Chu B S, Baharin B S, Che Man Y B, Quek S Y. Separation of vitamin E from palm fatty acid distillateusing silica. Equilibrium of batch adsorption. Journal of Food Engineering, 2004, 62(1): 97―103

doi: 10.1016/S0260-8774(03)00196-1
Jaycock M J, Parfitt G D. Chemistry of Interfaces, Onichester, Ellis Horwood Ltd, 1981
Boyd G E, Soldano B A. Self-diffusion of cations in and through sulfonated polystyrene cation-exchangepolymers. Journal of the American ChemicalSociety, 1953, 75(24): 6091―6099

doi: 10.1021/ja01120a001
Basha S, Murthy Z V P. Kinetic and equilibrium models for biosorption of Cr(VI) on chemicallymodified seaweed Cystoseira indica. ProcessBiochemistry, 2007, 42(11): 1521―1529
[1] Fanling Meng, Yunxue Xia, Jianshuai Zhang, Dong Qiu, Yaozhu Chu, Yuanyuan Tang. Cu/Cr co-stabilization mechanisms in a simulated Al2O3-Fe2O3-Cr2O3-CuO waste system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 116-.
[2] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[3] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[4] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[5] Haizhou Liu, Xuejun Yu. Hexavalent chromium in drinking water: Chemistry, challenges and future outlook on Sn(II)- and photocatalyst-based treatment[J]. Front. Environ. Sci. Eng., 2020, 14(5): 88-.
[6] Chao Pan, Daniel Giammar. Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese[J]. Front. Environ. Sci. Eng., 2020, 14(5): 81-.
[7] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
[8] Rongrong Zhang, Daohao Li, Jin Sun, Yuqian Cui, Yuanyuan Sun. In situ synthesis of FeS/Carbon fibers for the effective removal of Cr(VI) in aqueous solution[J]. Front. Environ. Sci. Eng., 2020, 14(4): 68-.
[9] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[10] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[11] Lanhe Zhang, Jing Zheng, Jingbo Guo, Xiaohui Guan, Suiyi Zhu, Yanping Jia, Jian Zhang, Xiaoyu Zhang, Haifeng Zhang. Effects of Al3+ on pollutant removal and extracellular polymeric substances (EPS) under anaerobic, anoxic and oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(6): 85-.
[12] Yuanyuan Zhang, Masashi Kuroda, Shunsuke Arai, Fumitaka Kato, Daisuke Inoue, Michihiko Ike. Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(5): 68-.
[13] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[14] G. S. Muthu Iswarya, B. Nirkayani, A. Kavithakani, V. C. Padmanaban. Statistical modeling of radiolytic (60Co g) degradation of Ofloxacin, antibiotic: Synergetic effect, kinetic studies & assessment of its degraded metabolites[J]. Front. Environ. Sci. Eng., 2019, 13(3): 42-.
[15] Yanqing Duan, Aijuan Zhou, Kaili Wen, Zhihong Liu, Wenzong Liu, Aijie Wang, Xiuping Yue. Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue[J]. Front. Environ. Sci. Eng., 2019, 13(1): 3-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed