Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2016, Vol. 11 Issue (2) : 75-84
Chemical-only reprogramming to pluripotency
Behnam Ebrahimi()
Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
 Download: PDF(356 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Direct reprogramming technology has emerged as an outstanding technique for the generation of induced pluripotent stem cells (iPSCs) and various specialized cells directly from somatic cells of different species. Reprogramming techniques conventionally use viral vectors encoding transcription factors to induce fate conversion. However, the introduction of transgenes limits the therapeutic applications of the reprogrammed cells. To overcome safety-related concerns, small molecules offer some advantages over the existing methods for the control of gene expression and induction of cell fate conversion. Technical advances in optimizing concentrations, durations, structures, and combinations of small molecules make chemical reprogramming a safe and feasible method. This review provides a concise overview of cutting-edge findings regarding chemical-only reprogramming as one of the integration-free approaches to iPSC generation.

Keywords cellular reprogramming      small molecule      chemical reprogramming      induced pluripotency      regenerative medicine     
Corresponding Authors: Behnam Ebrahimi   
Just Accepted Date: 12 April 2016   Issue Date: 17 May 2016
 Cite this article:   
Behnam Ebrahimi. Chemical-only reprogramming to pluripotency[J]. Front. Biol., 2016, 11(2): 75-84.
Starting cells Induction Stage (chemical agents) Maturation Product cells References
1 Mouse fibroblasts Stage 1: a cocktail of five small molecules, “VC6PF” (VPA, CHIR99021, 616452 (RepSox), Parnate (or tranylcypromine), and forskolin), was used for 16–20 days.Stage 2: small-molecule, DZNep (Z), was added to the VC6PF for the next 20–24 days.TTNPB (T) was used as an enhancer.[C6FZ essential compounds;VT optional compounds] Reprogramming medium was replaced with 2i-medium with dual inhibition (2i) of glycogen synthase kinase-3 (GSK3) and mitogen-activated protein kinase (ERK) with CHIR99021 and PD0325901, respectively for the last 12–16 days. Chemically-induced pluripotent stem cells (CiPSCs) Hou et al., 2013
2 Mouse fibroblasts Chemical cocktail consists of VC6PFT plus BrdU were added from day 0 to day 32, and Z (DZNep) was added from day 16 to day 32. The minimal influential set was BrdU, CHIR99021, RepSox (6) and forskolin. After day 32, medium containing chemicals was replaced with the 2i-medium. Chemically induced pluripotent stem cells (CiPSCs) Long et al., 2015
3 Mouse fibroblasts Stage 1: VC6PF+ EPZ004777+ AM580 (A) for 16 daysStage 2: VC6PFZ+ A+ SGC0946+ 5-aza-dc for 12 days N2B27/ 2i+ LIF for 12 days Chemically induced pluripotent stem cells (CiPSCs) Zhao et al., 2015
4 Mouse neural stem cells (NSCs) and Stage 1: 0.5 mM VPA, 15 mM CHIR, 2 mM 616452, 10 mM Parnate, 20 mM forskolin, 1 mM Ch 55, 5 mM EPZ.Stage 2: From day 20, 0.05 mM DZNep was added into the stage 1 chemical reprogramming medium. 2i-medium (with DMEM/F-12 containing N2 and B27 supplements) from day 40-44.(2i-medium: Knockout DMEM containing 10% KSR, 10% FBS+ 2 mM GlutaMAX, 1% NEAA, 55 mM b-mercaptoethanol+ 3 mM CHIR99021+ 1 mM PD0325901+ 10 ng/ml mouse LIF) Chemically induced pluripotent stem cells (CiPSCs) Ye et al., 2016
5 Mouse fibroblasts Stage 1: 0.5 mM VPA, 10 mM CHIR, 10 mM 616452, 10 mM Parnate, 10 mM forskolin, 0.05 mM AM580.Stage 2: from day 20, 0.05 mM DZNep was added into the stage 1 chemical reprogramming medium. 2i-medium (with DMEM/F-12 containing N2 and B27 supplements) from day 40. Chemically induced pluripotent stem cells (CiPSCs) Ye et al., 2016
6 Mouse small intestinal epithelial cells (IECs) Stage 1: 0.5 mM VPA, 10 mM CHIR, 20 mM 616452, 10 mM Parnate, 10 mM forskolin, 0.05 mM AM 580).Stage 2: From day 16, 0.05 mM DZNep was added into the stage 1 chemical reprogramming medium, and AM580 was withdrawn. 2i-medium (with DMEM/F-12 containing N2 and B27 supplements) from day 40. Chemically induced pluripotent stem cells (CiPSCs) Ye et al., 2016
Tab.1  Different protocols that have been used for chemical-only induction of pluripotency
Small-molecule Effect Role in generation of Necessity reference
Forskolin (F) Activator of adenylate cyclase Mouse CiPSC Essential inducer Hou et al., 2013; Long et al., 2015; Zhao et al., 2015;Ye et al., 2016
TTNPB (T) A synthetic retinoic acid receptor (RAR) ligand; activates retinoic acid receptors Mouse CiPSC Enhancer Hou et al., 2013; Long et al., 2015
Parnate (P, Tranylcypromine) An epigenetic modifier that inhibits lysine-specific demethylase 1 (LSD1) Mouse CiPSC Essential inducer Hou et al., 2013; Long et al., 2015; Zhao et al., 2015;Ye et al., 2016
5-aza-dc (5-Aza-2′-deoxycytidine) Inhibitor of DNA methyltransferase Mouse CiPSC Enhancer Zhao et al., 2015
VPA (V, valproic acid) an inhibitor of histone deacetylase (HDACs) Mouse CiPSC Essential inducer Hou et al., 2013; Long et al., 2015; Zhao et al., 2015;Ye et al., 2016
CHIR99021 An inhibitor of GSK-3 kinases Mouse CiPSC Essential inducer Hou et al., 2013; Long et al., 2015; Zhao et al., 2015;Ye et al., 2016
RepSox (6, or 616452) An inhibitor of TGF-b pathways Mouse CiPSC Essential inducer Hou et al., 2013; Long et al., 2015; Zhao et al., 2015;Ye et al., 2016
DZNep (Z, 3-Deazaneplanocin A) An S-adenosylhomocysteine synthesis inhibitor and a histone methyltransferase EZH2 inhibitor Mouse CiPSC Essential inducer (Hou et al., 2013) andEnhancer (Long et al., 2015)(Ye et al., 2016) Hou et al., 2013; Long et al., 2015; Zhao et al., 2015;Ye et al., 2016
PD0325901 (P) An inhibitor of the MEK/ERK pathway Mouse CiPSC A component of maturation medium Ye et al., 2016
BrdU (B, Bromodeoxyuridine) A synthetic analog of the nucleoside thymidine Mouse CiPSC Essential inducer Long et al., 2015
EPZ004777 (E) An inhibitor DOT1L methyltransferase Mouse CiPSC Essential inducer Zhao et al., 2015
AM580 (A) An agonist of retinoic acid receptor a (RARa) Mouse CiPSC Enhancer Zhao et al., 2015
SGC0946 (S) An inhibitor DOT1L methyltransferase Mouse CiPSC Enhancer Zhao et al., 2015
LIF (Leukemia inhibitory factor) An interleukin 6 class cytokine that inhibits differentiation of mouse embryonic stem cells and iPSCs Mouse CiPSC A component of maturation medium Zhao et al., 2015; Ye et al., 2016
Tab.2  Different small molecules and factors that have been used in chemical-only reprogramming to pluripotency
Fig.1  Pluripotent reprogramming of somatic cells using small molecules alone. Generally, three steps have been exploited by different authors for chemical-only reprogramming to pluripotency. Abbreviations are explained in Table 1 and Table 2. MM indicates maturation medium.
1 Anokye-Danso F, Trivedi C M, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber P J, Epstein J A, Morrisey E E (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4): 376–388
2 Babos K, Ichida J K (2015). Small molecules take a big step by converting fibroblasts into neurons. Cell Stem Cell, 17(2): 127–129
3 Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa S (2011). Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci USA, 108(34): 14234–14239
4 Cahan P, Li H, Morris S A, Lummertz da Rocha E, Daley G Q, Collins J J (2014). Cell net: Network biology applied to stem cell engineering. Cell, 158(4): 903–915
5 Chen J K, Liu H, Liu J, Qi J, Wei B, Yang J Q, Liang H Q, Chen Y, Chen J, Wu Y R, Guo L, Zhu J Y, Zhao X J, Peng T R, Zhang Y X, Chen S, Li X J, Li D W, Wang T, Pei D Q (2013). H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet, 45(1): 34–U62
6 Cheng L, Gao L, Guan W, Mao J, Hu W, Qiu B, Zhao J, Yu Y, Pei G (2015). Direct conversion of astrocytes into neuronal cells by drug cocktail. Cell Res, 25(11): 1269–1272
7 Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, Wang M, Yang W, Pei G (2014). Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res, 24(6): 665–679
8 Chou B K, Gu H, Gao Y, Dowey S N, Wang Y, Shi J, Li Y, Ye Z, Cheng T, Cheng L (2015). A facile method to establish human induced pluripotent stem cells from adult blood cells under feeder-free and xeno-free culture conditions: a clinically compliant approach. Stem Cells Transl Med, 4(4): 320–332
9 Chou B K, Mali P, Huang X, Ye Z, Dowey S N, Resar L M, Zou C, Zhang Y A, Tong J, Cheng L (2011). Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res, 21(3): 518–529
10 Cyranoski D 2014. Japanese woman is first recipient of next-generation stem cells. Nature Publishing Group.
11 Davies S G, Kennewell P D, Russell A J, Seden P T, Westwood R, Wynne G M (2015). Stemistry: The control of stem cells in situ using chemistry. J Med Chem, 58(7): 2863–2894
12 Durruthy-Durruthy J, Briggs S F, Awe J, Ramathal C Y, Karumbayaram S, Lee P C, Heidmann J D, Clark A, Karakikes I, Loh K M, Wu J C, Hoffman A R, Byrne J, Reijo Pera R A, Sebastiano V (2014). Rapid and Efficient Conversion of Integration-Free Human Induced Pluripotent Stem Cells to GMP-Grade Culture Conditions. PLoS ONE, 9(4): e94231
13 Ebrahimi B (2015a). Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regen (Lond), 4(1): 1–12
14 Ebrahimi B (2015b). Reprogramming of adult stem/progenitor cells into iPSCs without reprogramming factors. Journal of Medical Hypotheses and Ideas, 9(2): 99–103
15 Ebrahimi B (2016). Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics. Differentiation, doi: 10.1016/j.diff.2016.03.001
16 Eriksson P S, Perfilieva E, Bjork-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
17 Esteban M A, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6(1): 71–79
18 Foster K W, Liu Z, Nail C D, Li X, Fitzgerald T J, Bailey S K, Frost A R, Louro I D, Townes T M, Paterson A J, Kudlow J E, Lobo-Ruppert S M, Ruppert J M (2005). Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene, 24(9): 1491–1500
19 Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, Qiu Z, Xie X (2015). Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res, 25(9): 1013–1024
20 Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad, Ser B, Phys Biol Sci, 85(8): 348–362
21 Goh P A, Caxaria S, Casper C, Rosales C, Warner T T, Coffey P J, Nathwani A C (2013). A systematic evaluation of integration free reprogramming methods for deriving clinically relevant patient specific induced pluripotent stem (iPS) cells. PLoS ONE, 8(11): e81622
22 González F, Boué S, Belmonte J C I (2011). Methods for making induced pluripotent stem cells: reprogramming à la carte. Nat Rev Genet, 12(4): 231–242
23 He S, Guo Y, Zhang Y, Li Y, Feng C, Li X, Lin L, Guo L, Wang H, Liu C, Zheng Y, Luo C, Liu Q, Wang F, Sun H, Liang L, Li L, Su H, Chen J, Pei D, Zheng H (2015). Reprogramming somatic cells to cells with neuronal characteristics by defined medium both in vitro and in vivo. Cell Regen (Lond), 4(1): 1–9
24 Higuchi A, Ling Q D, Kumar S S, Munusamy M A, Alarfaj A A, Chang Y, Kao S H, Lin K C, Wang H C, Umezawa A (2015). Generation of pluripotent stem cells without the use of genetic material. Lab Invest, 95(1): 26–42
25 Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005). Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell, 121(3): 465–477
26 Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341(6146): 651–654
27 Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W, Gao L, Shen L, Huang Y, Xie G, Zhao H, Jin Y, Tang B, Yu Y, Zhao J, Pei G (2015). Direct conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 17(2): 204–212
28 Ichida J K, Blanchard J, Lam K, Son E Y, Chung J E, Egli D, Loh K M, Carter A C, Di Giorgio F P, Koszka K, Huangfu D, Akutsu H, Liu D R, Rubin L L, Eggan K (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5(5): 491–503
29 Jung D W, Kim W H, Williams D R (2014). Reprogram or reboot: small molecule approaches for the production of induced pluripotent stem cells and direct cell reprogramming. ACS Chem Biol, 9(1): 80–95
30 Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239): 771–775
31 Kim D, Kim C H, Moon J I, Chung Y G, Chang M Y, Han B S, Ko S, Yang E, Cha K Y, Lanza R, Kim K S (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4(6): 472–476
32 Koyanagi-Aoi M, Ohnuki M, Takahashi K, Okita K, Noma H, Sawamura Y, Teramoto I, Narita M, Sato Y, Ichisaka T, Amano N, Watanabe A, Morizane A, Yamada Y, Sato T, Takahashi J, Yamanaka S (2013). Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc Natl Acad Sci USA, 110(51): 20569–20574
33 Lee A S, Tang C, Rao M S, Weissman I L, Wu J C (2013). Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med, 19(8): 998–1004
34 Lee J, Sayed N, Hunter A, Au K F, Wong W H, Mocarski E S, Pera R R, Yakubov E, Cooke J P (2012). Activation of Innate Immunity Is Required for Efficient Nuclear Reprogramming. Cell, 151(3): 547–558
35 Li W, Jiang K, Ding S (2012a). Concise review: A chemical approach to control cell fate and function. Stem Cells, 30(1): 61–68
36 Li W, Jiang K, Wei W, Shi Y, Ding S (2013a). Chemical approaches to studying stem cell biology. Cell Res, 23(1): 81–91
37 Li W, Li K, Wei W, Ding S (2013b). Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell, 13(3): 270–283
38 Li W, Tian E, Chen Z X, Sun G, Ye P, Yang S, Lu D, Xie J, Ho T V, Tsark W M, Wang C, Horne D A, Riggs A D, Yip M L, Shi Y (2012b). Identification of Oct4-activating compounds that enhance reprogramming efficiency. Proc Natl Acad Sci USA, 109(51): 20853–20858
39 Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D, Zhu J, Du X, Xiong L, Du Y, Xu J, Xiao X, Wang J, Chai Z, Zhao Y, Deng H (2015). Small-molecule-driven direct reprogramming of mouse fibroblasts into functional n<?Pub Caret?>eurons. Cell Stem Cell, 17(2): 195–203
40 Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, Ge J, Liu C, Zhang W, Zhang X, Wu Y, Li H, Liu K, Wu C, Song Z, Zhao Y, Shi Y, Deng H (2011). Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res, 21(1): 196–204
41 Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm H S, Hao E, Hayek A, Ding S (2009). A chemical platform for improved induction of human iPSCs. Nat Methods, 6(11): 805–808
42 Lin T, Wu S (2015). Reprogramming with Small Molecules instead of Exogenous Transcription Factors. Stem Cells Int, 2015: 794632
43 Long Y, Wang M, Gu H, Xie X (2015). Bromodeoxyuridine promotes full-chemical induction of mouse pluripotent stem cells. Cell Res, 25(10): 1171–1174
44 Lu X, Zhao T (2013). Clinical Therapy Using iPSCs: Hopes and Challenges. Genomics Proteomics Bioinformatics, 11(5): 294–298
45 Ma H, Morey R, O'Neil R C, He Y, Daughtry B, Schultz M D, Hariharan M, Nery J R, Castanon R, Sabatini K, Thiagarajan R D, Tachibana M, Kang E, Tippner-Hedges R, Ahmed R, Gutierrez N M, Van Dyken C, Polat A, Sugawara A, Sparman M, Gokhale S, Amato P, Wolf P, Ecker D Jr, Laurent L C, Mitalipov S (2014). Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature, 511: 177–183
46 Masuda S, Wu J, Hishida T, Pandian G N, Sugiyama H, Izpisua Belmonte J C (2013). Chemically induced pluripotent stem cells (CiPSCs): a transgene-free approach. J Mol Cell Biol, 5(5): 354–355
47 Morris S A, Cahan P, Li H, Zhao A M, San Roman A K, Shivdasani R A, Collins J J, Daley G Q (2014). Dissecting Engineered Cell Types and Enhancing Cell Fate Conversion via CellNet. Cell, 158(4): 889–902
48 Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, Okita K, Osafune K, Arioka Y, Maeda T, Soejima H, Moriwaki H, Yamanaka S, Woltjen K, Yamada Y (2014). Premature Termination of Reprogramming In Vivo Leads to Cancer Development through Altered Epigenetic Regulation. Cell, 156(4): 663–677
49 Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013). Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res, 112(3): 523–533
50 Okita K, Ichisaka T, Yamanaka S (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151): 313–317
51 Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903): 949–953
52 Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S (2013). An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells, 31(3): 458–466
53 Okita K, Yamanaka S (2011). Induced pluripotent stem cells: opportunities and challenges. Philos Trans R Soc Lond B Biol Sci, 366(1575): 2198–2207
54 Onder T T, Kara N, Cherry A, Sinha A U, Zhu N, Bernt K M, Cahan P, Marcarci B O, Unternaehrer J, Gupta P B, Lander E S, Armstrong S A, Daley G Q (2012). Chromatin-modifying enzymes as modulators of reprogramming. Nature, 483(7391): 598–602
55 Pandian G N, Nakano Y, Sato S, Morinaga H, Bando T, Nagase H, Sugiyama H (2012). A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts. Sci Rep, 2: 544
56 Pennarossa G, Maffei S, Campagnol M, Tarantini L, Gandolfi F, Brevini T A (2013). Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci USA, 110(22): 8948–8953
57 Piao Y, Hung S S, Lim S Y, Wong R C, Ko M S (2014). Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors. Stem Cells Transl Med, 3(7): 787–791
58 Sayed N, Wong W T, Ospino F, Meng S, Lee J, Jha A, Dexheimer P, Aronow B J, Cooke J P (2015). Transdifferentiation of human fibroblasts to endothelial cells: role of innate immunity. Circulation, 131(3): 300–309
59 Schlaeger T M, Daheron L, Brickler T R, Entwisle S, Chan K, Cianci A, DeVine A, Ettenger A, Fitzgerald K, Godfrey M, Gupta D, McPherson J, Malwadkar P, Gupta M, Bell B, Doi A, Jung N, Li X, Lynes M S, Brookes E, Cherry A B C, Demirbas D, Tsankov A M, Zon L I, Rubin L L, Feinberg A P, Meissner A, Cowan C A, Daley G Q (2015). A comparison of non-integrating reprogramming methods. Nat Biotechnol, 33(1): 58–63
60 Shi Y, Desponts C, Do J T, Hahm H S, Scholer H R, Ding S (2008). Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 3(5): 568–574
61 Shu J, Wu C, Wu Y, Li Z, Shao S, Zhao W, Tang X, Yang H, Shen L, Zuo X, Yang W, Shi Y, Chi X, Zhang H, Gao G, Shu Y, Yuan K, He W, Tang C, Zhao Y, Deng H (2013). Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell, 153(5): 963–975
62 Silva M, Daheron L, Hurley H, Bure K, Barker R, Carr A J, Williams D, Kim H W, French A, Coffey P J, Cooper-White J J, Reeve B, Rao M, Snyder E Y, Ng K S, Mead B E, Smith J A, Karp J M, Brindley D A, Wall I (2015). Generating iPSCs: Translating Cell Reprogramming Science into Scalable and Robust Biomanufacturing Strategies. Cell Stem Cell, 16(1): 13–17
63 Soldner F, Hockemeyer D, Beard C, Gao Q, Bell G W, Cook E G, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009). Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5): 964–977
64 Stadtfeld M, Apostolou E, Ferrari F, Choi J, Walsh R M, Chen T, Ooi S S, Kim S Y, Bestor T H, Shioda T, Park P J, Hochedlinger K, (2012). Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all-iPS cell mice from terminally differentiated B cells. Nat Genet, 44: 398–405, S391–392
65 Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008). Induced pluripotent stem cells generated without viral integration. Science, 322(5903): 945–949
66 Su J B, Pei D Q, Qin B M (2013). Roles of small molecules in somatic cell reprogramming. Acta Pharmacol Sin, 34(6): 719–724
67 Sugiura M, Kasama Y, Araki R, Hoki Y, Sunayama M, Uda M, Nakamura M, Ando S, Abe M (2014). Induced Pluripotent Stem Cell Generation-Associated Point Mutations Arise during the Initial Stages of the Conversion of These Cells. Stem Cell Rep, 2(1): 52–63
68 Takahashi K, Tanabe K, Ohnuki M, Narita M, Sasaki A, Yamamoto M, Nakamura M, Sutou K, Osafune K, Yamanaka S (2014). Induction of pluripotency in human somatic cells via a transient state resembling primitive streak-like mesendoderm. Nat Commun, 5: 3678
69 Takahashi K, Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4): 663–676
70 Tomaru Y, Hasegawa R, Suzuki T, Sato T, Kubosaki A, Suzuki M, Kawaji H, Forrest A R R, Hayashizaki Y, Consortium F, Shin J W, Suzuki H (2014). A transient disruption of fibroblastic transcriptional regulatory network facilitates trans-differentiation. Nucleic Acids Res, 42(14): 8905–8913
71 Valamehr B, Robinson M, Abujarour R, Rezner B, Vranceanu F, Le T, Medcalf A, Lee T T, Fitch M, Robbins D, Flynn P (2014). Platform for Induction and Maintenance of Transgene-free hiPSCs Resembling Ground State Pluripotent Stem Cells. Stem Cell Rep, 2(3): 366–381
72 Vidal S E, Amlani B, Chen T, Tsirigos A, Stadtfeld M (2014). Combinatorial Modulation of Signaling Pathways Reveals Cell-Type-Specific Requirements for Highly Efficient and Synchronous iPSC Reprogramming. Stem Cell Rep, 3(4): 574–584
73 Wang T, Chen K, Zeng X, Yang J, Wu Y, Shi X, Qin B, Zeng L, Esteban M A, Pan G, Pei D (2011). The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell, 9(6): 575–587
74 Warren L, Manos P D, Ahfeldt T, Loh Y H, Li H, Lau F, Ebina W, Mandal P K, Smith Z D, Meissner A, Daley G Q, Brack A S, Collins J J, Cowan C, Schlaeger T M, Rossi D J (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5): 618– 630
75 Woltjen K, Michael I P, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung H K, Nagy A (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239): 766–770
76 Xu J, Du Y, Deng H (2015). Direct Lineage Reprogramming: Strategies, Mechanisms, and Applications. Cell Stem Cell, 16(2): 119–134
77 Ye J, Ge J, Zhang X, Cheng L, Zhang Z, He S, Wang Y, Lin H, Yang W, Liu J, Zhao Y, Deng H (2016). Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res, 26(1): 34–45
78 Yu C, Liu K, Tang S, Ding S (2014). Chemical approaches to cell reprogramming. Curr Opin Genet Dev, 28: 50–56
79 Yu J, Chau K F, Vodyanik M A, Jiang J, Jiang Y (2011). Efficient feeder-free episomal reprogramming with small molecules. PLoS ONE, 6(3): e17557
80 Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin I I, Thomson J A (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928): 797–801
81 Zhang L, Yin J C, Yeh H, Ma N X, Lee G, Chen X A, Wang Y, Lin L, Chen L, Jin P, Wu G Y, Chen G (2015). Small Molecules Efficiently Reprogram Human Astroglial Cells into Functional Neurons. Cell Stem Cell, 17(6): 735–747
82 Zhao Y, Zhao T, Guan J, Zhang X, Fu Y, Ye J, Zhu J, Meng G, Ge J, Yang S, Cheng L, Du Y, Zhao C, Wang T, Su L, Yang W, Deng H (2015). A XEN-like State Bridges Somatic Cells to Pluripotency during Chemical Reprogramming. Cell, 163(7): 1678–1691
83 Zhou H, Wu S, Joo J Y, Zhu S, Han D W, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer H R, Duan L, Ding S (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5): 381–384
84 Zhou Y y, Zeng F (2013). Integration-free Methods for Generating Induced Pluripotent Stem Cells. Genomics Proteomics Bioinformatics, 11(5): 284–287
85 Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, Kim J, Zhang K, Ding S (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell, 7(6): 651–655
[1] Yasemin G. ISGOR, Belgin S. ISGOR. Kinases and glutathione transferases: selective and sensitive targeting[J]. Front Biol, 2011, 6(2): 156-169.
[2] Peng LIU, Zhipeng FAN, Songlin WANG. Understanding of stem cells in bone biology and translation into clinical applications[J]. Front Biol, 2010, 5(5): 396-406.
[3] Wei LI, Qi ZHOU. Epigenetic reprogramming: roads to pluripotency[J]. Front. Biol., 2010, 5(1): 8-11.
Full text