Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers of Energy and Power Engineering in China  0, Vol. Issue (): 27-46   https://doi.org/10.1007/s11708-009-0002-4
  REVIEW ARTICLE 本期目录
Human power-based energy harvesting strategies for mobile electronic devices
Human power-based energy harvesting strategies for mobile electronic devices
Dewei JIA1, Jing LIU2,3()
1. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; 2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; 3. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(577 KB)   HTML
Abstract

Energy problems arise with the proliferation of mobile electronic devices, which range from entertainment tools to life saving medical instruments. The large amount of energy consumption and increasing mobility of electronic devices make it urgent that new power sources should be developed. It has been gradually recognized that the human body is highly flexible in generating applicable power from sources of heat dissipation, joint rotation, enforcement of body weight, vertical displacement of mass centers, and even elastic deformation of tissues and other attachments. These basic combinations of daily activities or metabolic phenomena open up possibilities for harvesting energy which is strong enough to power mobile or even implantable medical devices which could be used for a long time or be recharged permanently. A comprehensive review is presented in this paper on the latest developed or incubating electricity generation methods based on human power which would serve as promising candidates for future mobile power. Thermal and mechanical energy, investigated more thoroughly so far, will particularly be emphasized. Thermal energy relies on body heat and employs the property of thermoelectric materials, while mechanical energy is generally extracted in the form of enforcement or displacement excitation. For illustration purposes, the piezoelectric effect, dielectric elastomer and the electromagnetic induction couple, which can convert force directly into electricity, were also evaluated. Meanwhile, examples are given to explain how to adopt inertia generators for converting displacement energy via piezoelectric, electrostatic, electromagnetic or magnetostrictive vibrators. Finally, future prospects in harvesting energy from human power are made in conclusion.

Key wordsmobile electronic device    human power    energy harvesting    micro/miniaturized generator    battery    green energy
收稿日期: 2008-05-03      出版日期: 2009-03-05
Corresponding Author(s): LIU Jing,Email:jliu@cl.cryo.ac.cn   
 引用本文:   
. Human power-based energy harvesting strategies for mobile electronic devices[J]. Frontiers of Energy and Power Engineering in China, 0, (): 27-46.
Dewei JIA, Jing LIU. Human power-based energy harvesting strategies for mobile electronic devices. Front Energ Power Eng Chin, 0, (): 27-46.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-009-0002-4
https://academic.hep.com.cn/fie/CN/Y0/V/I/27
communication typehigh quality/mWlow quality/mW
GSMMax.9.025.0
BluetoothMax.6.119.0
GSMNormal8.023.8
BluetoothNormal5.118.0
Tab.1  
U/Vpower/Wsource
implantable pacemakers1.804.80×10-6Ref. [4]
neural stimulators1.751.88×10-3Ref. [5]
insulin pumps12.04.80Ref. [6]
Tab.2  
processor familycompanythreshold voltage/Vmax current/μApower/mWsource
ADM690Analog4.652000.93footnote

Adm690-adm695: Microprocessor supervisory circuits data sheet. 2007. http://www.analog.com/en/prod/

ADM8697Analog1.302000.26footnote5Adm690-adm695: Microprocessor supervisory circuits data sheet. 2007. http://www.analog.com/en/prod/
ISP1160xPhilips3.302000.66footnote

Isp1160x low power consumption. http://www.nxp.com/

XC800 familyInfineon5.00280a1.40footnote

Xc800 family. http://www.infineon.com

Tab.3  
deviceemailMP3browsenotesmessagingidle
RCVspeakertextaudio
laptop/W15.1616.2518.0215.9916.5514.214.6514.415.513.975
handheld/W1.3861.4392.0911.71.7421.2761.5571.319-1.2584
cellphone/mW539472-----392114726
pager/mW9272---78---13
high-end MP3/W---2.977-----1.884
low-end MP3/mW---327-----143
voice recorder/mW------166--17
variance/%1649622727861489095018252882536731351107500
Tab.4  
unitLi-sulfur dioxidezinc airNi-GdNi-LiLi-ion
specific energy/(Wh?kg-1)125340305080
Energy density/(Wh?L-1)415550100180200
cycle life (number of charges)111500500300-500
Tab.5  
Fig.1  
Fig.2  
Fig.3  
operation modeU3Q3W
mode 31 (transverse)g31F1Wd31F1LH12g31d31LWHF12
mode 33 (longitude)g33F3WLHd33F312g33d33F32HLW
Tab.6  
?/?0d31/(pC?N-1)g31/ (mV?m?N-1)K31/10-2d33/(pC?N-1)g33/(mV?m?N-1)K33/10-3
PVDF122321612-33-330150
PZT-5H3400-274-9.13959319.7750
PZT-5A1700-171-11.434.437424.8705
BaTiO317007852114914.1480
Tab.7  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
structurecharge constrainedvoltage constrained
in-plane overlap varyingFe~1/x2Fe constant
in-plane gap closingFe~xFe~1/x2
out-of-plane gap closingFe constantFe~1/x
Tab.8  
Fig.8  
Fig.9  
harvesting methodcurrent output range/mAvoltage output range/Vpower output range/(μW?cm-2)
piezoelectric (17 cm2)0.01-0.11-103-7
thermoelectric (36 cm2)10-250.1-1.086-225
Tab.9  
typegoverning equationpracticalatheoreticalaadvantagesdisadvantages
piezoelectricU=σy2k22Y17.7355high voltage is 3-10 Vno external voltage neededcompact configurationcompatible with MEMShigh coupling in single crystalshigh output impedancedepolarizationcharge leakagebrittleness in PZTpoor coupling in PVDF
electrostaticU=?E22444easier to integrate in MEMSno need for smart materialhigh voltage of 2-10 Vseparate voltage source neededcapacitivemechanical constraints needed
electromagneticU=B22μ04400no external source neededno smart materiallow output voltage of 0.1-0.2 V big size and heavy weight
magnetostrictiveU=GFZb0.9ultra-high coupling coefficientno depolarization problemhigh flexibilitysuited to high frequency vibrationnon-linearpick-up coilmay need bias magnetsdifficult to integrate with MEMS
Tab.10  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
1 Ezzati M, Lopez A D, Rodgers A. Comparative quantification of health risks: Global and regional burden of disease due to selected major risk factors. Lancet , 2002, 360(9343): 1347-1360
doi: 10.1016/S0140-6736(02)11403-6
Ezzati M, Lopez A D, Rodgers A. Comparative quantificationof health risks: Global and regional burden of disease due to selectedmajor risk factors. Lancet, 2002, 360(9343): 1347―1360

doi: 10.1016/S0140-6736(02)11403-6
2 Jones C E, Sivalingam K M, Agrawal P, . A survey of energy efficient network protocols for wireless networks. Wireless Networks , 2001, 7(4): 343-358
doi: 10.1023/A:1016627727877
Jones C E, Sivalingam K M, Agrawal P, et al. A survey of energyefficient network protocols for wireless networks. Wireless Networks, 2001, 7(4): 343―358

doi: 10.1023/A:1016627727877
3 Lin C-H, Liu J-C, Liao C-W. Energy consumption analysis of audio applications on mobile handheld devices. In: 2007 IEEE Region 10 Conference, Taipei: IEEE . 2007, 1-4
Lin C-H, Liu J-C, Liao C-W. Energy consumption analysis of audio applications onmobile handheld devices. In: 2007 IEEERegion 10 Conference, Taipei: IEEE. 2007, 1―4
4 Gerosa A, Maniero A, Neviani A. A fully integrated two-channel a/d interface for the acquisition of cardiac signals in implantable pacemakers. IEEE Journal of Solid-State Circuits , 2004, 39(7): 1083-1093
doi: 10.1109/JSSC.2004.829921
Gerosa A, Maniero A, Neviani A. A fully integrated two-channela/d interface for the acquisition of cardiac signals in implantablepacemakers. IEEE Journal of Solid-StateCircuits, 2004, 39(7): 1083―1093

doi: 10.1109/JSSC.2004.829921
5 Kelly S K,Wyatt J L. Low power neural stimulator for a retinal prosthesis. ARVO , 2004, 45(5): 4174-4174
Kelly S K,Wyatt J L. Low power neural stimulatorfor a retinal prosthesis. ARVO, 2004, 45(5): 4174―4174
6 Groning R, Remmerbach S, Jansen A C. Telemedicine: insulin pump controlled via the global system for mobile communications (GSM). International Journal of Pharmaceutics , 2007, 339(1-2): 61-65
doi: 10.1016/j.ijpharm.2007.02.017
Groning R, Remmerbach S, Jansen A C. Telemedicine: insulin pumpcontrolled via the global system for mobile communications (GSM). International Journal of Pharmaceutics, 2007, 339(1―2): 61―65

doi: 10.1016/j.ijpharm.2007.02.017
7 Rabaey K, Lissens G, Siciliano S D, . A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters , 2003, 25(18): 1531-1535
doi: 10.1023/A:1025484009367
Rabaey K, Lissens G, Siciliano S D, et al. A microbial fuelcell capable of converting glucose to electricity at high rate andefficiency. Biotechnology Letters, 2003, 25(18): 1531―1535

doi: 10.1023/A:1025484009367
8 Justin G A, Zhang Y, Sun M, . Biofuel cells: A possible power source for implantable electronic devices. 2004 Conference Proceedings 26th Annual International Conference of the Engineering in Medicine and Biology Society , 2004, 6(2): 4096-4099
Justin G A, Zhang Y, Sun M, et al. Biofuel cells: A possible power source for implantableelectronic devices. 2004 Conference Proceedings26th Annual International Conference of the Engineering in Medicineand Biology Society, 2004, 6(2): 4096―4099
9 Maisel W H, Sweeney M O, Stevenson W G, . Recalls and safety alerts involving pacemakers and implantable cardioverter-defibrillator generators. Am Med Assoc , 2001, 286(7): 793-799
doi: 10.1001/jama.286.7.793
Maisel W H, Sweeney M O, Stevenson W G, et al. Recalls and safetyalerts involving pacemakers and implantable cardioverter-defibrillatorgenerators. Am Med Assoc, 2001, 286(7): 793―799

doi: 10.1001/jama.286.7.793
10 Lal A D, Li R H. Pervasive power: A radioisotope-powered piezoelectric generator. IEEE Pervasive Computing , 2005, 4(1): 53-61
doi: 10.1109/MPRV.2005.21
Lal A D, Li R H. Pervasive power: A radioisotope-powered piezoelectric generator. IEEE Pervasive Computing, 2005, 4(1): 53―61

doi: 10.1109/MPRV.2005.21
11 Epstein A H. Millimeter-scale, micro-electro-mechanical systems gas turbine engines. Journal of Engineering for Gas Turbines and Power , 2004, 126(2): 205-206
doi: 10.1115/1.1739245
Epstein A H. Millimeter-scale, micro-electro-mechanicalsystems gas turbine engines. Journal ofEngineering for Gas Turbines and Power, 2004, 126(2): 205―206

doi: 10.1115/1.1739245
12 Tanaka S, Chang KS, Min KB, . Mems-based components of a miniature fuel cell/fuel reformer system. Chemical Engineering Journal , 2004, 101(1-3): 143-149
doi: 10.1016/j.cej.2004.01.017
Tanaka S, Chang KS, Min KB, et al. Mems-based componentsof a miniature fuel cell/fuel reformer system. Chemical Engineering Journal, 2004, 101(1―3): 143―149

doi: 10.1016/j.cej.2004.01.017
13 Li D, Chou P H. Maximizing efficiency of solar-powered systems by load matching. In: 2004 Proceedings of the International Symposium on Low Power Electronics and Design. Piscataway: IEEE , 2004, 162-167
Li D, Chou P H. Maximizing efficiency ofsolar-powered systems by load matching. In: 2004 Proceedings of the International Symposium on Low Power Electronicsand Design. Piscataway: IEEE, 2004, 162―167
14 Lee J B, Chen Z, Allen M G, . A high voltage solar cell array as an electrostatic MEMS power supply. 1994 IEEE Workshop on Micro Electro Mechanical Systems , 1994, 331-336
Lee J B, Chen Z, Allen M G, et al. A high voltage solar cell array as an electrostaticMEMS power supply. 1994 IEEE Workshop onMicro Electro Mechanical Systems, 1994, 331―336
15 Goto K, Nakagawa T, Nakamura O, . An implantable power supply with an optically rechargeable lithium battery. IEEE Transactions on Biomedical Engineering , 2001, 48(7): 830-833
doi: 10.1109/10.930908
Goto K, Nakagawa T, Nakamura O, et al. An implantable powersupply with an optically rechargeable lithium battery. IEEE Transactions on Biomedical Engineering, 2001, 48(7): 830―833

doi: 10.1109/10.930908
16 Pagidimarry N K, Konijeti V C. A high efficiency optical power transmitting system to a rechargeable lithium battery for all implantable biomedical devices. In: IFMBE Proceedings 15th , Berlin: Springer. 2007, 533-537
Pagidimarry N K, Konijeti V C. A high efficiency opticalpower transmitting system to a rechargeable lithium battery for allimplantable biomedical devices. In: IFMBEProceedings 15th, Berlin: Springer. 2007, 533―537
17 Sliski A P. Low power x-ray source with implantable probe for treatment of brain tumors. US Patent , 5369679, 11/29/1994
Sliski A P. Low power x-ray source with implantable probe for treatment of braintumors. US Patent, 5369679,
18 Wang G, Liu W, Bashirullah R, . A closed loop transcutaneous power transfer system for implantable devices with enhanced stability. In: IEEE International Symposium on Circuits and Systems. Piscataway: IEEE , 2004, 17-20
Wang G, Liu W, Bashirullah R, et al. A closed loop transcutaneous power transfersystem for implantable devices with enhanced stability.In: IEEE International Symposium on Circuits and Systems.Piscataway: IEEE, 2004, 17―20
19 Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing , 2005, 4(1): 18-27
doi: 10.1109/MPRV.2005.9
Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 2005, 4(1): 18―27

doi: 10.1109/MPRV.2005.9
20 Stevels A L N, Jansen A J. Renewable energy in portable radios, an environmental benchmarking study. Journal for Sustainable Product Design , 1998, 25(4): 577-582
Stevels A L N, Jansen A J. Renewable energy in portableradios, an environmental benchmarking study. Journal for Sustainable Product Design, 1998, 25(4): 577―582
21 Leonov V, Fiorini P. Thermal matching of a thermoelectric energy scavenger with the ambient. In: Proc 5th European Conf on Thermoelectrics (ECT). Ukraine: Odessa , 2007, 10-12
Leonov V, Fiorini P. Thermal matching of a thermoelectricenergy scavenger with the ambient. In: Proc 5th European Conf on Thermoelectrics (ECT). Ukraine: Odessa, 2007, 10―12
22 Stordeur M, Stark I. Low power thermoelectric generator-self-sufficient energy supply for micro systems. In: IEEE 16th Conference on Thermoelectrics. Dresden: IEEE , 1997, 575-577
Stordeur M, Stark I. Low power thermoelectricgenerator-self-sufficient energy supply for micro systems. In: IEEE 16th Conference on Thermoelectrics. Dresden:IEEE, 1997, 575―577
23 Qu W, Plotner M, Fischer W J. Micro fabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous microsystems. J Micromech Microeng , 2001, 11(2): 146-152
doi: 10.1088/0960-1317/11/2/310
Qu W, Plotner M, Fischer W J. Micro fabrication of thermoelectricgenerators on flexible foil substrates as a power source for autonomousmicrosystems. J Micromech Microeng, 2001, 11(2): 146―152

doi: 10.1088/0960-1317/11/2/310
24 Venkatasubramanian R, Siivola E, Colpitts T B, . Thin-film thermoelectric devices with high room-temperature figures of merit. Nature , 2001, 413(6856): 597-602
doi: 10.1038/35098012
Venkatasubramanian R, Siivola E, Colpitts T B, et al. Thin-film thermoelectric devices with high room-temperature figuresof merit. Nature, 2001, 413(6856): 597―602

doi: 10.1038/35098012
25 Watkins C, Shen B, Venkatasubramanian R. Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors. In: 2005 International Conference on Thermoelectrics, Piscataway: IEEE , 2005, 265-267
Watkins C, Shen B, Venkatasubramanian R. Low-grade-heat energy harvesting usingsuperlattice thermoelectrics for applications in implantable medicaldevices and sensors. In: 2005 InternationalConference on Thermoelectrics, Piscataway: IEEE, 2005, 265―267
26 Boettner H, Schubert A, Schlereth K H, . New thermoelectric components using micro-system-technologies. Micro electro-mechanical Systems , 2004, 13(3): 414-420
Boettner H, Schubert A, Schlereth K H, et al. New thermoelectric components using micro-system-technologies. Micro electro-mechanical Systems, 2004, 13(3): 414―420
27 Acklin B, Schlereth K, Boettner H, . Process for producing a thermoelectric converter. US Patent 6818470. 11/16/2004
Acklin B, Schlereth K, Boettner H, et al. Process for producing a thermoelectric converter. US Patent 6818470.
28 Strasser M, Aigner R, Lauterbach C, . Micromachined cmos thermoelectric generators as on-chip power supply. Sensors and Actuators A: Physical , 2004, 114(2,3): 362-370
Strasser M, Aigner R, Lauterbach C, et al. Micromachined cmos thermoelectric generatorsas on-chip power supply. Sensors and ActuatorsA: Physical, 2004, 114(2,3): 362―370
29 Dragoman M, Dragoman D, Plana R. Modeling of rf energy sensing and harvesting using the giant thermoelectric effect in carbon nanotubes. Applied Physics Letters , 2007, 91(17): 173117
doi: 10.1063/1.2785119
Dragoman M, Dragoman D, Plana R. Modeling of rf energy sensingand harvesting using the giant thermoelectric effect in carbon nanotubes. Applied Physics Letters, 2007, 91(17): 173117

doi: 10.1063/1.2785119
30 Ghamaty S, Elsner N B. Quantum well thermoelectric devices. In: Nolas G S, Yang Jihui, Hogan T P, . Thermoelectric Materials 2003-Research and Applications (2003 MRS Fall Meeting). Boston, MA , 2003, 225-228
Ghamaty S, Elsner N B. Quantum well thermoelectricdevices. In: Nolas G S, Yang Jihui, Hogan T P, et al. Thermoelectric Materials 2003-Researchand Applications (2003 MRS Fall Meeting). Boston, MA, 2003, 225―228
31 Ghamaty S, Bass J C, Elsner N B. Quantum well thermoelectric devices and applications. Twenty-Second International Conference on Thermoelectrics ICT, Piscataway: IEEE , 2003. 563-566
Ghamaty S, Bass J C, Elsner N B. Quantum well thermoelectric devices and applications. Twenty-Second International Conference on ThermoelectricsICT, Piscataway: IEEE, 2003. 563―566
32 Jovanovic V, Ghamaty S. Design, fabrication and testing of energy-harvesting thermoelectric generator. In: Matsuzaki Y ed. Smart Structures and Materials 2006: Smart Structures and Integrated Systems, Nagoya Univ, Japan , 2006, 142-149
Jovanovic V, Ghamaty S. Design, fabrication and testingof energy-harvesting thermoelectric generator. In: Matsuzaki Y ed. Smart Structures and Materials 2006: Smart Structuresand Integrated Systems, Nagoya Univ, Japan, 2006, 142―149
33 Weber J, Potje-Kamloth K, Haase F, . Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sensors and Actuators A: Physical , 2006, 132(1): 325-330
doi: 10.1016/j.sna.2006.04.054
Weber J, Potje-Kamloth K, Haase F, et al. Coin-size coiled-uppolymer foil thermoelectric power generator for wearable electronics. Sensors and Actuators A: Physical, 2006, 132(1): 325―330

doi: 10.1016/j.sna.2006.04.054
34 IEEE. Standard on piezoelectricity ANSI/ IEEE standard. 1987
IEEE. Standard onpiezoelectricity ANSI/ IEEE standard. 1987
35 Clark W, Ramsay M. Smart material transducers as power sources for mems devices. In: Proceedings of SPIE’s 8th Annual International Symposium on Smart Structures and Materials. Bellingham: SPIE , 2001, 429-438
Clark W, Ramsay M. Smart material transducersas power sources for mems devices. In: Proceedings of SPIE’s 8th Annual International Symposium onSmart Structures and Materials. Bellingham: SPIE, 2001, 429―438
36 Gonzalez J L, Rubio A, Moll F. A prospect of the piezoelectric effect to supply power to wearable electronic devices. In: Proc 4th Int Conf on Materials Engineering for Resources. Piscataway: IEEE , 2001, 202-207
Gonzalez J L, Rubio A, Moll F. A prospect of the piezoelectric effect to supply powerto wearable electronic devices. In: Proc4th Int Conf on Materials Engineering for Resources. Piscataway: IEEE, 2001, 202―207
37 Williams R B, Park G, Inman D J, . An overview of composite actuators with piezoceramic fibers. In: Proc IMAC-XX Conf on Structural Dynamics. Bellingham: SPIE , 2002, 1618-1624
Williams R B, Park G, Inman D J, et al. An overview of composite actuators with piezoceramicfibers. In: Proc IMAC-XX Conf on StructuralDynamics. Bellingham: SPIE, 2002, 1618―1624
38 Swallow L M, Luo J K, Siores E, . A piezoelectric fibre composite based energy harvesting device for potential wearable applications. Smart Mater Structure , 2008, 17(2): 025017
doi: 10.1088/0964-1726/17/2/025017
Swallow L M, Luo J K, Siores E, et al. A piezoelectricfibre composite based energy harvesting device for potential wearableapplications. Smart Mater Structure, 2008, 17(2): 025017

doi: 10.1088/0964-1726/17/2/025017
39 Pelrine R. Dielectric elastomers: Generator made fundamentals and applications. In: Proc ISSS. Bellingham: SPIE , 2001, 148-156
Pelrine R. Dielectricelastomers: Generator made fundamentals and applications. In: Proc ISSS. Bellingham: SPIE, 2001, 148―156
40 Prahlad H, Kornbluh R, Pelrine R, . Polymer power: Dielectric elastomers and their applications in distributed actuation and power generation. In: Proceedings of ISSS 2005, Bellingham: SPIE , 2005. 100-107
Prahlad H, Kornbluh R, Pelrine R, et al. Polymer power: Dielectric elastomers and theirapplications in distributed actuation and power generation. In: Proceedings of ISSS 2005, Bellingham: SPIE, 2005. 100―107
41 Kornbluh R D, Pelrine R, Pei Q, . Electroelastomers: Applications of dielectric elastomer transducers for actuation, generation, and smart structures. In: Smart Structures and Materials 2002, Bellingham: SPIE , 2002, 254-270
Kornbluh R D, Pelrine R, Pei Q, et al. Electroelastomers: Applications of dielectricelastomer transducers for actuation, generation, and smart structures. In: Smart Structures and Materials 2002, Bellingham:SPIE, 2002, 254―270
42 Pelrine R E, Kornbluh R D, Joseph J P. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical , 1998, 64(1): 77-85
doi: 10.1016/S0924-4247(97)01657-9
Pelrine R E, Kornbluh R D, Joseph J P. Electrostriction of polymerdielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A: Physical, 1998, 64(1): 77―85

doi: 10.1016/S0924-4247(97)01657-9
43 Kymissis J, Kendall C, Paradiso J, . Parasitic power harvesting in shoes. In: Second IEEE Conf Wearable Computing, Washington DC: IEEE Computer Society , 1998, 132-139
Kymissis J, Kendall C, Paradiso J, et al. Parasitic power harvesting in shoes. In: Second IEEE Conf Wearable Computing, WashingtonDC: IEEE Computer Society, 1998, 132―139
44 Poulin G, Sarraute E, Costa F. Generation of electrical energy for portable devices comparative study of an electromagnetic and a piezoelectric system. Sensors & Actuators: A Physical , 2004, 116(3): 461-471
doi: 10.1016/j.sna.2004.05.013
Poulin G, Sarraute E, Costa F. Generation of electricalenergy for portable devices comparative study of an electromagneticand a piezoelectric system. Sensors &Actuators: A Physical, 2004, 116(3): 461―471

doi: 10.1016/j.sna.2004.05.013
45 Saha C R, O’Donnell T, Wang N, . Electromagnetic generator for harvesting energy from human motion. Sensors and Actuators: A Physical , 2008, 137(1): 1-7
Saha C R, O’Donnell T, Wang N, et al. Electromagnetic generator forharvesting energy from human motion. Sensorsand Actuators: A Physical, 2008, 137(1): 1―7
46 Rome L C, Flynn L, Goldman E M, . Generating electricity while walking with loads. Science , 2005, 309(9): 1725-1728
doi: 10.1126/science.1111063
Rome L C, Flynn L, Goldman E M, et al. Generating electricitywhile walking with loads. Science, 2005, 309(9): 1725―1728

doi: 10.1126/science.1111063
47 WilliamsC B, ShearwoodC, HarradineM A, . Development of an electromagnetic micro-generator. IEE Proc Circuits Devices Syst , 2001, 148 (6): 337-342
doi: 10.1049/ip-cds:20010525
Williams C B, Shearwood C, Harradine M A, et al. Development of anelectromagnetic micro-generator. IEE ProcCircuits Devices Syst, 2001, 148 (6): 337―342

doi: 10.1049/ip-cds:20010525
48 Stephen N G. On energy harvesting from ambient vibration. J Sound Vib , 2006, 293(1-2): 409-425
doi: 10.1016/j.jsv.2005.10.003
Stephen N G. On energy harvesting from ambient vibration. J Sound Vib, 2006, 293(1―2): 409―425

doi: 10.1016/j.jsv.2005.10.003
49 Bouten C V C, Koekkoek K T M, Verduin M, . A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans on Biomedical ,1997, 44(3): 136-147
doi: 10.1109/10.554760
Bouten C V C, Koekkoek K T M, Verduin M, et al. A triaxial accelerometer and portable data processing unit for theassessment of daily physical activity. IEEE Trans on Biomedical,1997, 44(3): 136―147

doi: 10.1109/10.554760
50 Cavallier B, Berthelot P, Ballandras S, . Energy harvesting using composite silicon/lithium niobate vibrating structures. In: 2007 IEEE Ultrasonics Symposium. New York: IEEE , 2007, 1602-1604
Cavallier B, Berthelot P, Ballandras S, et al. Energy harvesting using composite silicon/lithiumniobate vibrating structures. In: 2007IEEE Ultrasonics Symposium. New York: IEEE, 2007, 1602―1604
51 Roundy S. Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Dissertation for PhD: University of California, Berkeley , 2003, 103
Roundy S. Energyscavenging for wireless sensor nodes with a focus on vibration toelectricity conversion. Dissertation forPhD: University of California, Berkeley, 2003, 103
52 Sodano H A, Park G, Inman D J. Estimation of electric charge output for piezoelectric energy harvesting. Journal of Strain , 2004, 40(2): 49-58
doi: 10.1111/j.1475-1305.2004.00120.x
Sodano H A, Park G, Inman D J. Estimationof electric charge output for piezoelectric energy harvesting. Journal of Strain, 2004, 40(2): 49―58

doi: 10.1111/j.1475-1305.2004.00120.x
53 Eggborn T. Analytical models to predict power harvesting with piezoelectricmaterials. Dissertation for the Doctoral Degree. Virginia: Virginia Polytechnic Institute and State University , 1999, 158-163
Eggborn T. Analyticalmodels to predict power harvesting with piezoelectricmaterials. Dissertation for the Doctoral Degree. Virginia:Virginia Polytechnic Institute and State University, 1999, 158―163
54 Ren K, Liu Y, Hofmann H, . An active energy harvesting scheme with an electroactive polymer. Applied Physics Letters , 2007, 91(13): 132910
doi: 10.1063/1.2793172
Ren K, Liu Y, Hofmann H, et al. An active energyharvesting scheme with an electroactive polymer. Applied Physics Letters, 2007, 91(13): 132910

doi: 10.1063/1.2793172
55 Ottman G, Hofmann H, Lesieutre G. Optimized piezoelectric energy harvesting circuit using stepdown converter in discontinuous conduction mode. IEEE Trans on Power Electronics , 2003, 18(2): 696-703
doi: 10.1109/TPEL.2003.809379
Ottman G, Hofmann H, Lesieutre G. Optimized piezoelectric energyharvesting circuit using stepdown converter in discontinuous conductionmode. IEEE Trans on Power Electronics, 2003, 18(2): 696―703

doi: 10.1109/TPEL.2003.809379
56 Lefeuvre E, Badel A, Richard C, . Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. J Intell Mater Syst Struct , 2005, 16(10): 865-876
doi: 10.1177/1045389X05056859
Lefeuvre E, Badel A, Richard C, et al. Piezoelectric energyharvesting device optimization by synchronous electric charge extraction. J Intell Mater Syst Struct, 2005, 16(10): 865―876

doi: 10.1177/1045389X05056859
57 Ottman G, Hofmann H, Bhatt A, . Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply. IEEE Transactions on Power Electronics , 2002, 17(5): 1-8
doi: 10.1109/TPEL.2002.802194
Ottman G, Hofmann H, Bhatt A, et al. Adaptive piezoelectricenergy harvesting circuit for wireless, remote power supply. IEEE Transactions on Power Electronics, 2002, 17(5): 1―8

doi: 10.1109/TPEL.2002.802194
58 Sodano H A, Park G, Inman D J. Generation and storage of electricity from power harvesting devices. Journal of Intelligent Material Systems and Structures , 2005, 16(1): 67-75
doi: 10.1177/1045389X05047210
Sodano H A, Park G, Inman D J. Generation and storage ofelectricity from power harvesting devices. Journal of Intelligent Material Systems and Structures, 2005, 16(1): 67―75

doi: 10.1177/1045389X05047210
59 Sodano H A, Park G, Inman D J. Comparison of piezoelectric energy harvesting devices for recharging batteries. Journal of Intelligent Material Systems and Structures , 2005, 16(10): 799-807
doi: 10.1177/1045389X05056681
Sodano H A, Park G, Inman D J. Comparison of piezoelectricenergy harvesting devices for recharging batteries. Journal of Intelligent Material Systems and Structures, 2005, 16(10): 799―807

doi: 10.1177/1045389X05056681
60 Sodano H A, Park G, Leo D J, . Model of piezoelectric power harvesting beam. In: ASME’s International Mechanical Engineering Congress and Expo. New Orleans: ASME , 2003, 15-21
Sodano H A, Park G, Leo D J, et al. Model of piezoelectric power harvesting beam. In: ASME’s International Mechanical EngineeringCongress and Expo. New Orleans: ASME, 2003, 15―21
61 Sodano H A, Inman D J, Park G. A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest , 2004, 36(3): 197-205
doi: 10.1177/0583102404043275
Sodano H A, Inman D J, Park G. A review of power harvestingfrom vibration using piezoelectric materials. The Shock and Vibration Digest, 2004, 36(3): 197―205

doi: 10.1177/0583102404043275
62 Lesieutre G, Hofmann H, Ottman G. Electric power generation from piezoelectric materials. In: The 13th International Conference on Adaptive Structures and Technologies. New York: IEEE , 2002, 153-158
Lesieutre G, Hofmann H, Ottman G. Electric power generation from piezoelectric materials. In: The 13th International Conference on AdaptiveStructures and Technologies. New York: IEEE, 2002, 153―158
63 Santos J L, Antunes F, Chehab A, . A maximum power point tracker for pv systems using a high performance boost converter. Sol Energy , 2006, 80(7): 772-778
doi: 10.1016/j.solener.2005.06.014
Santos J L, Antunes F, Chehab A, et al. A maximum powerpoint tracker for pv systems using a high performance boost converter. Sol Energy, 2006, 80(7): 772―778

doi: 10.1016/j.solener.2005.06.014
64 Renaud M, Fiorini P, Hoof C. Optimization of a piezoelectric unimorph for shock and impact energy harvesting. Smart Mater Structure , 2007, 16(4): 1125-1135
doi: 10.1088/0964-1726/16/4/022
Renaud M, Fiorini P, Hoof C. Optimization of a piezoelectricunimorph for shock and impact energy harvesting. Smart Mater Structure, 2007, 16(4): 1125―1135

doi: 10.1088/0964-1726/16/4/022
65 Mateu M L, Fonellosa F, Moll F. Electrical characterization of a piezoelectric film-based power generator for autonomous wearable devices. In: Proc of XVIII Design of Circuits and Integrated Systems Conference, Piscataway. IEEE , 2003, 677-682
Mateu M L, Fonellosa F, Moll F. Electrical characterization of a piezoelectric film-basedpower generator for autonomous wearable devices. In: Proc of XVIII Design of Circuits and Integrated Systems Conference,Piscataway. IEEE, 2003, 677―682
66 Wischke M, Goldschmidtboeing F, Woias P. A low cost generator concept for energy harvesting applications. In:The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Piscataway. IEEE , 2007, 875-878
Wischke M, Goldschmidtboeing F, Woias P. A low cost generator concept for energyharvesting applications. In:The 14th InternationalConference on Solid-State Sensors, Actuators and Microsystems, Piscataway.IEEE, 2007, 875―878
67 Meninger S, Mur-Miranda J, Amirtharajah R, . Vibration to electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems . 2001, 9(1): 64-76
Meninger S, Mur-Miranda J, Amirtharajah R, et al. Vibration to electric energy conversion. IEEE Transactions on Very Large Scale Integration(VLSI) Systems. 2001, 9(1): 64―76
68 Mitcheson P D, Green T C, Yeatman E M, . Architectures for vibration-driven micropower generators. J of Microelectromechanical Systems , 2004, 13(3): 429-440
doi: 10.1109/JMEMS.2004.830151
Mitcheson P D, Green T C, Yeatman E M, et al. Architectures for vibration-driven micropower generators. J of Microelectromechanical Systems, 2004, 13(3): 429―440

doi: 10.1109/JMEMS.2004.830151
69 Despesse G, Jager T, Chaillout J, . Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging. In: Proc Design, Test, Integration and Packaging of MEMS and MOEMS. Montreux : Suisse , 2005, 386-390
Despesse G, Jager T, Chaillout J, et al. Fabrication and characterization of high dampingelectrostatic micro devices for vibration energy scavenging. In: Proc Design, Test, Integration and Packagingof MEMS and MOEMS. Montreux : Suisse, 2005, 386―390
70 Ma W, Wong M,Ruber L. Dynamic simulation of an implemented electrostatic power micro-generator. In: Proc Design, Test, Integration and Packaging of MEMS and MOEMS. Montreux : Suisse , 2005, 380-385
Ma W, Wong M,Ruber L. Dynamic simulation of an implemented electrostatic powermicro-generator. In: Proc Design, Test,Integration and Packaging of MEMS and MOEMS. Montreux : Suisse, 2005, 380―385
Meninger S, Mur-Miranda J, Lang J, et al. Vibration to electric energy conversion. IEEE Transactions on Very Large Scale Integration(VLSI) Systems, 2001, 9(1): 64―76
72 Tashiro R, Kabei N, Katayama K, . Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artif Organs , 2002, 5(4): 0239-0245
Tashiro R, Kabei N, Katayama K, et al. Development of an electrostatic generator fora cardiac pacemaker that harnesses the ventricular wall motion. J Artif Organs, 2002, 5(4): 0239―0245
73 Tashiro R, Kabai N, Katayama K, . Development of an electrostatic generator that harnesses the motion of a living body. Journal of Artificial Organs , 2000, 4(3): 916-922
Tashiro R, Kabai N, Katayama K, et al. Development of an electrostatic generator thatharnesses the motion of a living body. Journal of Artificial Organs, 2000, 4(3): 916―922
74 Arakawa Y, Suzuki Y, Kasagi N. Micro seismic power generator using electret polymer film power. In: 2006 19th IEEE International Conference on Micro Electro Mechanical Systems. Istanbul: IEEE , 2006, 37-38
Arakawa Y, Suzuki Y, Kasagi N. Micro seismic power generator using electret polymerfilm power. In: 2006 19th IEEE InternationalConference on Micro Electro Mechanical Systems. Istanbul: IEEE, 2006, 37―38
75 Pelrine R. ElecIroactive polymer devices. US Patent 6545384, 4/8/2003
Pelrine R. ElecIroactivepolymer devices. US Patent 6545384,
76 El-Hami M, Glynne P, White N, . Design and fabrication of a new vibration-based electromechanical power generator. Sensors Actuators A ,2001, 92(1–3): 335-342
doi: 10.1016/S0924-4247(01)00569-6
El-Hami M, Glynne P, White N, et al. Design and fabricationof a new vibration-based electromechanical power generator. Sensors Actuators A,2001, 92(1–3): 335―342

doi: 10.1016/S0924-4247(01)00569-6
77 Chapman P L, Krein P T. Micromotor technology: Electric drive designer’s perspective. In: Thirty-Sixth IAS Annual Meeting Conference Record of the 2001 IEEE. Chicago: IEEE , 2001, 1978-1983
Chapman P L, Krein P T. Micromotor technology: Electricdrive designer’s perspective. In: Thirty-Sixth IAS Annual Meeting Conference Record of the 2001 IEEE.Chicago: IEEE, 2001, 1978―1983
78 Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems. Sensors & Actuators: A Physical , 1996, 52(1–3): 8-11
doi: 10.1016/0924-4247(96)80118-X
Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems. Sensors & Actuators: A Physical, 1996, 52(1–3): 8―11

doi: 10.1016/0924-4247(96)80118-X
79 Williams CB, Shearwood C, Harradine M A, . Development of an electromagnetic micro-generator. IEE Proceedings Circuits, Devices and Systems , 2001, 148(6): 337-342
doi: 10.1049/ip-cds:20010525
Williams CB, Shearwood C, Harradine M A, et al. Development of anelectromagnetic micro-generator. IEE ProceedingsCircuits, Devices and Systems, 2001, 148(6): 337―342

doi: 10.1049/ip-cds:20010525
80 Mizuno M, Chetwynd D G. Investigation of a resonance microgenerator. Journal of Micromechanics and Microengineering , 2003, 13(2): 209-216
doi: 10.1088/0960-1317/13/2/307
Mizuno M, Chetwynd D G. Investigation of a resonance microgenerator. Journal of Micromechanics and Microengineering, 2003, 13(2): 209―216

doi: 10.1088/0960-1317/13/2/307
81 Beeby S P, Tudor M J, Koukharenko E, . Micromachined silicon generator for harvesting power from vibrations. In: Proc Transducers 2005, Piscataway: IEEE , 2005. 780-783
Beeby S P, Tudor M J, Koukharenko E, et al. Micromachined silicon generator for harvestingpower from vibrations. In: Proc Transducers2005, Piscataway: IEEE, 2005. 780―783
Perez-Rodriguez A, Serre C, Fondevilla N, et al. Design of electromagnetic inertial generatorsfor energy scavenging applications. In: Proc Eurosensors XIX press. Guimaraes: Eurosensors2005, 344―349
82 Perez-Rodriguez A, Serre C, Fondevilla N, . Design of electromagnetic inertial generators for energy scavenging applications. In: Proc Eurosensors XIX press. Guimaraes: Eurosensors 2005, 344-349
Kulah H, Najafi K. An electromagnetic micropower generator for low-frequency environmental vibrations. In: 2004 17th IEEE International Conference onMEMS. Piscataway: IEEE, 2004, 237―240
83 Kulah H, Najafi K. An electromagnetic micro power generator for low-frequency environmental vibrations. In: 2004 17th IEEE International Conference on MEMS. Piscataway: IEEE , 2004, 237-240
Huang W S, Tzeng K E, Cheng M C, et al. Design and fabrication of a vibrational micro-generatorfor wearable MEMS. In: Proc EurosensorsXVII. Barcelona: Eurosensors, 2003, 695―697
84 Huang W S, Tzeng K E, Cheng M C, . Design and fabrication of a vibrational micro-generator for wearable MEMS. In: Proc Eurosensors XVII. Barcelona: Eurosensors , 2003, 695-697
Scherrer S, Plumlee D G, Moll A J. Energy scavenging device in LTCC materials. IEEE Workshop on Microelectronics and ElectronDevices. Piscataway: IEEE, 2005, 77―78
85 Scherrer S, Plumlee D G, Moll A J. Energy scavenging device in LTCC materials. IEEE Workshop on Microelectronics and Electron Devices. Piscataway: IEEE , 2005, 77-78
86 Amirtharajah R, Chandrakasan A P, Mit C. Self-powered signal processing using vibration-based powergeneration. IEEE Journal of Solid-State Circuits , 1998, 33(5): 687-695
doi: 10.1109/4.668982
Amirtharajah R, Chandrakasan A P, Mit C. Self-poweredsignal processing using vibration-based powergeneration. IEEE Journal of Solid-State Circuits, 1998, 33(5): 687―695

doi: 10.1109/4.668982
87 Beeby S P, Torah R N, Tudor M J, . A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng , 2007, 17(7): 1257-1265
doi: 10.1088/0960-1317/17/7/007
Beeby S P, Torah R N, Tudor M J, et al. A micro electromagneticgenerator for vibration energy harvesting. J Micromech Microeng, 2007, 17(7): 1257―1265

doi: 10.1088/0960-1317/17/7/007
88 Donnell T. Scaling effects for electromagnetic vibrational power generators. Microsystem Technology , 2007, 13(11-12): 1637-1645
doi: 10.1007/s00542-006-0363-0
Donnell T. Scaling effects for electromagnetic vibrationalpower generators. Microsystem Technology, 2007, 13(11―12): 1637―1645

doi: 10.1007/s00542-006-0363-0
89 Staley M, Flatau A. Characterization of energy harvesting potential of terfenol-d and galfenol. In: Proceedings of SPIE. Bellingham: SPIE , 2005, 630-640
Staley M, Flatau A. Characterization of energyharvesting potential of terfenol-d and galfenol. In: Proceedings of SPIE. Bellingham: SPIE, 2005, 630―640
90 Bayrashev A, Robbins W, Ziaie B. Low frequency wireless powering of microsystems using piezoelectricmagnetostrictive laminate composites. Sensors and Actuators A: Physical , 2004, 114(2-3 ): 244-249
doi: 10.1016/j.sna.2004.01.007
Bayrashev A, Robbins W, Ziaie B. Low frequency wireless poweringof microsystems using piezo electricmagnetostrictive laminate composites. Sensors and Actuators A: Physical, 2004, 114(2―3): 244―249

doi: 10.1016/j.sna.2004.01.007
91 Huang J, O’Handley R, Bono D. New, high-sensitivity, hybrid magnetostrictive/electroactive magnetic field. In: Sensors Proc SPIE. Bellingham: SPIE , 2003, 229-231
Huang J, O’Handley R, Bono D. New, high-sensitivity, hybrid magnetostrictive/electroactivemagnetic field. In: Sensors Proc SPIE.Bellingham: SPIE, 2003, 229―231
92 Wang L, Yuan F G. Energy harvesting by magnetostrictive material (msm) for powering.Wireless sensors in SHM. In: 2007 SPIE/ASME Best Student Paper Presentation Contest SPIE, Bellingham: SPIE , 2007, 652941
Wang L, Yuan F G. Energy harvesting by magnetostrictivematerial (msm) for powering.Wireless sensors in SHM. In: 2007 SPIE/ASME Best Student Paper Presentation Contest SPIE, Bellingham:SPIE, 2007, 652941
93 Mitcheson P D, Miao P, Stark B H. MEMS electrostatic micropower generator for low frequency operation. Sensors and Actuators , 2004, 115(2-3): 523-529
doi: 10.1016/j.sna.2004.04.026
Mitcheson P D, Miao P, Stark B H. MEMS electrostaticmicropower generator for low frequency operation. Sensors and Actuators, 2004, 115(2―3): 523―529

doi: 10.1016/j.sna.2004.04.026
94 Büren T V, Mitcheson P D, Green T C. Optimization of inertial micropower generators for human walking motion. IEEE Sensors Journal , 2006, 6(1): 18-38
Büren T V, Mitcheson P D, Green T C. Optimization of inertial micropower generators for humanwalking motion. IEEE Sensors Journal, 2006, 6(1): 18―38
95 Beeby S P, Tudor M J, Koukharenko E, . Micromachined silicon generator for harvesting power from vibrations. 2004. http://www.perpetuum.co.uk/resource
www.perpetuum.co.uk/resource
96 Farmer J R. A comparison of power harvesting techniques and related energy storage issues. Dissertation for the Doctoral Degree. Virginia: Virginia Polytechnic Institute and State University , 2007, 115-115
Farmer J R. A comparison of power harvesting techniques and related energy storageissues. Dissertation for the Doctoral Degree.Virginia: Virginia Polytechnic Institute and State University, 2007, 115―115
97 Büren T V, Lukowicz P, Tr?ster G. Kinetic energy powered computing- an experimental feasibility study. In: Proc 7th IEEE Int Symposium on Wearable Computers. Washington DC: IEEE Computer Society , 2003, 22-24
Büren T V, Lukowicz P, Tröster G. Kinetic energy powered computing- an experimental feasibilitystudy. In: Proc 7th IEEE Int Symposiumon Wearable Computers. Washington DC: IEEE Computer Society, 2003, 22―24
98 Miao P, Micheson P, Holmes A, . Mems inertial power generators for biomedical applications. In: Proc Design, Test, Integration and Packaging of MEMS and MOEMS. Berlin: Springer , 2005, 295-298
Miao P, Micheson P, Holmes A, et al. Mems inertial power generators for biomedicalapplications. In: Proc Design, Test, Integrationand Packaging of MEMS and MOEMS. Berlin: Springer, 2005, 295―298
Micheson P, Stark B, Miao P, et al. Analysis and optimisation of mems on-chip powersupply for self powering of slow moving. In: sensors Proc Eurosensors XVII. New York: IEEE, 2003, 30―31
99 Micheson P, Stark B, Miao P, . Analysis and optimisation of mems on-chip power supply for self powering of slow moving. In: sensors Proc Eurosensors XVII. New York: IEEE , 2003, 30-31
Park C, Chou P H. Power utility maximizationfor multi-supply systems by a load-matching switch. In: 2004 International Symposium on Low Power Electronics and Design.Piscataway: IEEE, 2004, 168―173
100 Park C, Chou P H. Power utility maximization for multi-supply systems by a load-matching switch. In: 2004 International Symposium on Low Power Electronics and Design. Piscataway: IEEE , 2004, 168-173
101 Mitcheson P D, Reilly E K, Toh T, . Performance limits of the three MEMS inertial energy generator transduction types. J Micromech Microeng , 2007, 17(9): 211–216
doi: 10.1088/0960-1317/17/9/S01
Mitcheson P D, Reilly E K, Toh T, et al. Performancelimits of the three MEMS inertial energy generator transduction types. J Micromech Microeng, 2007, 17(9): 211–216

doi: 10.1088/0960-1317/17/9/S01
102 Siebert J, Collier J, Amirtharajah R. Self-timed circuits for harvesting ac power supplies. In: Proc International Symposium on Low Power Electronics and Design. New York: ACM , 2005, 315-318
Siebert J, Collier J, Amirtharajah R. Self-timed circuits for harvesting ac power supplies. In: Proc International Symposium on Low Power Electronicsand Design. New York: ACM, 2005, 315―318
103 Niu P, Chapman P, Riemer R, . Evaluation of motions and actuation methods for biomechanical energy harvesting. In: 35th Annul IEEE Power Elecrronics Specialisrs Conference. Piscataway: IEEE , 2004, 2100-2106
Niu P, Chapman P, Riemer R, et al. Evaluation of motions and actuation methodsfor biomechanical energy harvesting. In: 35th Annul IEEE Power Elecrronics Specialisrs Conference. Piscataway:IEEE, 2004, 2100―2106
104 Yang Y, Wei X, Liu J. Suitability of a thermoelectric power generator for implantable medical electronic devices. J Phys D: Appl Phys , 2007, 40(18): 5790-5800
doi: 10.1088/0022-3727/40/18/042
Yang Y, Wei X, Liu J. Suitability of a thermoelectricpower generator for implantable medical electronic devices. J Phys D: Appl Phys, 2007, 40(18): 5790―5800

doi: 10.1088/0022-3727/40/18/042
105 Strasser M, Aigner R, Franosch M,. Miniaturized thermoelectric generators based on poly-si and poly-sige surface micromachining. Sensor and Actuator A , 2002, 97–98 : 535-542
doi: 10.1016/S0924-4247(01)00815-9
Strasser M, Aigner R, Franosch M,et al. Miniaturized thermoelectricgenerators based on poly-si and poly-sige surface micromachining. Sensor and Actuator A, 2002, 97–98: 535―542

doi: 10.1016/S0924-4247(01)00815-9
106 Donelan J M, Li Q, Naing V,. Biomechanical energy harvesting: Henerating electricity during walking with minimal user effort. Science , 2008, 319(5864): 807-810
doi: 10.1126/science.1149860
Donelan J M, Li Q, Naing V,et al. Biomechanical energyharvesting: Henerating electricity during walking with minimal usereffort. Science, 2008, 319(5864): 807―810

doi: 10.1126/science.1149860
107 Fletsche R. Force transduction materials for human- technology interfaces. IBM Systems Journal , 1996-35(3-4): 630-638
Fletsche R. Forcetransduction materials for human- technology interfaces. IBM Systems Journal, 1996―35(3―4): 630―638
108 Starner T. Human powered wearable computing. IBM Systems Journal , 1996, 35(3-4): 618-629
Starner T. Humanpowered wearable computing. IBM SystemsJournal, 1996, 35(3―4): 618―629
109 Yaglioglu O. Modeling and design considerations for a micro-hydraulic piezoelectric power generator. Dissertation for the Doctoral Degree. Cambridge, Mass: Massachusetts Institute of Technology , 2002, 112-115
Yaglioglu O. Modelingand design considerations for a micro-hydraulic piezoelectric powergenerator. Dissertation for the DoctoralDegree. Cambridge, Mass: Massachusetts Institute of Technology, 2002, 112―115
110 Antaki J F. A gait powered autologous battery charging system for artificial organs. American Society of Artificial Internal Organs Journal , 1995, 41(3): 588-595
Antaki J F. A gait powered autologous battery charging system for artificialorgans. American Society of ArtificialInternal Organs Journal, 1995, 41(3): 588―595
111 Shenck N S. A demonstration of useful electric energy generation from piezoceramics in a shoe. Dissertation for the Doctoral Degree. Cambridge , Mass: Massachusetts Institute of Technology, 1999, 210-212
Shenck N S. A demonstration of useful electric energy generation from piezoceramicsin a shoe. Dissertation for the DoctoralDegree. Cambridge, Mass: Massachusetts Institute of Technology, 1999, 210―212
112 Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro , 2001, 21(3): 30-42
doi: 10.1109/40.928763
Shenck N S, Paradiso J A. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro, 2001, 21(3): 30―42

doi: 10.1109/40.928763
113 Hayashida J. Unobtrusive integration of magnetic generator systems into common footwear. Dissertation for the Doctoral Degree. Cambridge , Mass: Massachusetts Institute of Technology, 2000, 322-323
Hayashida J. Unobtrusiveintegration of magnetic generator systems into common footwear. Dissertation for the Doctoral Degree. Cambridge, Mass: MassachusettsInstitute of Technology, 2000, 322―323
114 Paradiso J A, Morris S J. Shoe-integrated sensor system for wireless gait analysis and real-time feedback. Engineering in Medicine and Biology , 2002, 3(3): 2468-2469
Paradiso J A, Morris S J. Shoe-integrated sensor systemfor wireless gait analysis and real-time feedback. Engineering in Medicine and Biology, 2002, 3(3): 2468―2469
115 Vijayaraghavan K, Rajamani R. Active control based energy harvesting for batteryless wireless traffic sensors. In: 2007American Control Conference , New York: IEEE, 2007, 3106-3111
Vijayaraghavan K, Rajamani R. Active control based energyharvesting for batteryless wireless traffic sensors. In: 2007American Control Conference, New York: IEEE, 2007, 3106―3111
116 Paradiso J, Feldmeier M. A compact, wireless, welf-powered pushbutton controller. In: 2001 Ubiquitous Computing . Berlin: Springer, 2001, 299-304
Paradiso J, Feldmeier M. A compact, wireless, welf-poweredpushbutton controller. In: 2001 UbiquitousComputing. Berlin: Springer, 2001, 299―304
117 Post E R. Intrabody busses for data and power. In: Proc of the First Int Symposium on Wearable Computers . Cambridge: IEEE, 1997, 52-55
Post E R. Intrabody busses for data and power. In: Proc of the First Int Symposium on Wearable Computers. Cambridge: IEEE, 1997, 52―55
118 Lukowicz P, Ward J A, Junker H,. Recognizing workshop activity using body worn microphones and accelerometers. In: Proc 2nd Int Conf Pervasive Computing , Berlin: Springer, 2004, 18-32
Lukowicz P, Ward J A, Junker H,et al. Recognizing workshop activity using body wornmicrophones and accelerometers. In: Proc2nd Int Conf Pervasive Computing, Berlin: Springer, 2004, 18―32
119 Bao L, Intille S S. Activity recognition from user-annotated acceleration data. Lecture Notes in Computer Science (Pervasive Computing) , 2004, (3001): 1-17
Bao L, Intille S S. Activity recognition fromuser-annotated acceleration data. LectureNotes in Computer Science (Pervasive Computing), 2004, (3001): 1―17
120 Donelan J M, Kram R, Kuo A D. Simultaneous positive and negative external mechanical work in human walking. Journal of Biomechanics , 2002, 35(1): 117-124
doi: 10.1016/S0021-9290(01)00169-5
Donelan J M, Kram R, Kuo A D. Simultaneous positive andnegative external mechanical work in human walking. Journal of Biomechanics, 2002, 35(1): 117―124

doi: 10.1016/S0021-9290(01)00169-5
Kuo A D. Biophysics: Harvesting energy by improvingthe economy of human walking. Science, 2005, 309(5741): 1686―1687

doi: 10.1126/science.1118058
121 Kuo A D. Biophysics: Harvesting energy by improving the economy of human walking. Science , 2005, 309(5741): 1686-1687
doi: 10.1126/science.1118058
122 Granstrom J, Feenstra J, Sodano H A,. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures , 2007, 16(5): 1810-1820
doi: 10.1088/0964-1726/16/5/036
Granstrom J, Feenstra J, Sodano H A,et al. Energy harvestingfrom a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures, 2007, 16(5): 1810―1820

doi: 10.1088/0964-1726/16/5/036
123 Feenstra J, Granstrom J, Sodano H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing , 2008, 22(3): 721-734
doi: 10.1016/j.ymssp.2007.09.015
Feenstra J, Granstrom J, Sodano H. Energy harvesting througha backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing, 2008, 22(3): 721―734

doi: 10.1016/j.ymssp.2007.09.015
124 Goto H, Sugiura T, Harada Y,. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med Biol Eng Comput , 1999, 37(1): 377-380
doi: 10.1007/BF02513315
Goto H, Sugiura T, Harada Y,et al. Feasibility of usingthe automatic generating system for quartz watches as a leadless pacemakerpower source. Med Biol Eng Comput, 1999, 37(1): 377―380

doi: 10.1007/BF02513315
125 Siores E. Detection and suppression of muscle tremors. GB(Great Britain) Patent , 0623905.7/1/2006
Siores E. Detectionand suppression of muscle tremors. GB(GreatBritain) Patent, 0623905.
126 Tozzi P. Method and device to convert cardiac and other body movements into electricity to power any implantable medical system. US Patent , 20070078492-A1, 4/5/2007
Tozzi P. Methodand device to convert cardiac and other body movements into electricityto power any implantable medical system. US Patent, 20070078492-A1,
127 Ramsey M J, Clark WW. Piezoelectric energy harvesting for bio-MEMS applications. In: Porter D L ed. Proceedings of SPIE’s 8th Annual Smart Materials and Structures Conference , Newport Beach, CA: ETATS-UNIS, 2001, 429-438
Ramsey M J, Clark WW. Piezoelectric energy harvestingfor bio-MEMS applications. In: Porter DL ed. Proceedings of SPIE’s 8th Annual Smart Materials and StructuresConference, Newport Beach, CA: ETATS-UNIS, 2001, 429―438
128 Myers R, Vickers M, Kim H,. Small scale windmill. Applied Physics Letters , 2007, 90: 054106
doi: 10.1063/1.2435346
Myers R, Vickers M, Kim H,et al. Small scale windmill. Applied Physics Letters, 2007, 90: 054106

doi: 10.1063/1.2435346
129 Courses E, Surveys T. Nanogenerators and nanopiezotronics. In: 2007 IEEE International Electron Devices Meeting , Washington: IEEE, 2007, 371-374
Courses E, Surveys T. Nanogenerators and nanopiezotronics. In: 2007 IEEE International Electron Devices Meeting, Washington: IEEE, 2007, 371―374
130 Gao Y, Wang Z. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics . Nano letters, 2007, 7(8): 2499-2505
doi: 10.1021/nl071310j
Gao Y, Wang Z. Electrostaticpotential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano letters, 2007, 7(8): 2499―2505

doi: 10.1021/nl071310j
131 Wang X, Song J, Liu J,. Direct-current nanogenerator driven by ultrasonic waves.Science , 2007, 316(5821): 102
doi: 10.1126/science.1139366
Wang X, Song J, Liu J,et al. Direct-current nanogeneratordriven by ultrasonic waves.Science, 2007, 316(5821): 102

doi: 10.1126/science.1139366
132 Wang Z. Self-powered nanotech. Scientific American Magazine , 2008, 298(1): 82-87
Wang Z. Self-powerednanotech. Scientific American Magazine, 2008, 298(1): 82―87
133 Wang Z L, Wang X, Song J,. Piezoelectric nanogenerators for self-powered nanodevices. IEEE Pervasive Computing , 2008, 7(1): 49-55
doi: 10.1109/MPRV.2008.14
Wang Z L, Wang X, Song J,et al. Piezoelectric nanogeneratorsfor self-powered nanodevices. IEEE PervasiveComputing, 2008, 7(1): 49―55

doi: 10.1109/MPRV.2008.14
134 Qin Y, Wang X, Wang Z L. Microfibre–nanowire hybrid structure for energy scavenging. Nature , 2008, 451(7180): 809-813
doi: 10.1038/nature06601
Qin Y, Wang X, Wang Z L. Microfibre–nanowirehybrid structure for energy scavenging. Nature, 2008, 451(7180): 809―813

doi: 10.1038/nature06601
135 Daiguji H, Yang P, Szeri A J,. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett , 2004, 4(12): 2315-2321
doi: 10.1021/nl0489945
Daiguji H, Yang P, Szeri A J,et al. Electrochemomechanical energy conversion in nanofluidicchannels. Nano Lett, 2004, 4(12): 2315―2321

doi: 10.1021/nl0489945
136 Yang J, Lu F, Kostiuk LW,. Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena. J Micromech Microeng , 2003, 13(6): 963-970
doi: 10.1088/0960-1317/13/6/320
Yang J, Lu F, Kostiuk LW,et al. Electrokinetic microchannelbattery by means of electrokinetic and microfluidic phenomena. J Micromech Microeng, 2003, 13(6): 963―970

doi: 10.1088/0960-1317/13/6/320
137 Perry J L, Kandlikar SG. Review of fabrication of nanochannels for single phase liquid flow. Microfluidics and Nanofluidics , 2006, 2(3): 185-193
doi: 10.1007/s10404-005-0068-1
Perry J L, Kandlikar SG. Reviewof fabrication of nanochannels for single phase liquid flow. Microfluidics and Nanofluidics, 2006, 2(3): 185―193

doi: 10.1007/s10404-005-0068-1
138 Channels N. Mass and charge transport in micro and nanofluidic channels. Nanoscale and Microscale Thermophysical Engineering , 2007, 11(1): 57-69
doi: 10.1080/15567260701337878
Channels N. Mass and charge transport in micro andnanofluidic channels. Nanoscale and MicroscaleThermophysical Engineering, 2007, 11(1): 57―69

doi: 10.1080/15567260701337878
139 Wu C, Jin Z, Wang H Q,. Design and fabrication of a nanofluidic channel by selective thermal oxidation and etching back of silicon dioxide made on a silicon substrate. Journal of Micromechanics and Microengineering , 2007, 17(12): 2393-2397
doi: 10.1088/0960-1317/17/12/001
Wu C, Jin Z, Wang H Q,et al. Design and fabrication of a nanofluidicchannel by selective thermal oxidation and etching back of silicondioxide made on a silicon substrate. Journalof Micromechanics and Microengineering, 2007, 17(12): 2393―2397

doi: 10.1088/0960-1317/17/12/001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed