Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers of Energy and Power Engineering in China  2009, Vol. 3 Issue (1): 11-26   https://doi.org/10.1007/s11708-009-0009-x
  REVIEW ARTICLE 本期目录
Thermal radiative properties of metamaterials and other nanostructured materials: A review
Thermal radiative properties of metamaterials and other nanostructured materials: A review
Ceji FU1(), Zhuomin M. ZHANG2
1. State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Aerospace Engineering, Peking University, Beijing 100871, China; 2. G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
 全文: PDF(526 KB)   HTML
Abstract

The ability to manufacture, control, and manipulate structures at extremely small scales is the hallmark of modern technologies, including microelectronics, MEMS/NEMS, and nano-biotechnology. Along with the advancement of microfabrication technology, more and more investigations have been performed in recent years to understand the influence of microstructures on radiative properties. The key to the enhancement of performance is through the modification of the reflection and transmission properties of electromagnetic waves and thermal emission spectra using one-, two-, or three-dimensional micro/nanostructures. This review focuses on recent developments in metamaterials–manmade materials with exotic optical properties, and other nanostructured materials, such as gratings and photonic crystals, for application in radiative energy transfer and energy conversion systems.

Key wordsmetamaterial    nanostructured material    thermal radiative property    radiative energy transfer
收稿日期: 2008-09-10      出版日期: 2009-03-05
Corresponding Author(s): FU Ceji,Email:cjfu@pku.edu.cn   
 引用本文:   
. Thermal radiative properties of metamaterials and other nanostructured materials: A review[J]. Frontiers of Energy and Power Engineering in China, 2009, 3(1): 11-26.
Ceji FU, Zhuomin M. ZHANG. Thermal radiative properties of metamaterials and other nanostructured materials: A review. Front Energ Power Eng Chin, 2009, 3(1): 11-26.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-009-0009-x
https://academic.hep.com.cn/fie/CN/Y2009/V3/I1/11
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
1 Sharma A K, Zaidi S H, Logofatu P C, . Optical and electrical properties of nanostructured metal-silicon-metal photodetectors. IEEE Journal of Quantum Electronics , 2002, 38(12): 1651-1660
doi: 10.1109/JQE.2002.805112
Sharma A K, Zaidi S H, Logofatu P C, et al. Optical and electricalproperties of nanostructured metal-silicon-metal photodetectors. IEEE Journal of Quantum Electronics, 2002, 38(12): 1651―1660

doi: 10.1109/JQE.2002.805112
2 Boueke A, Kuhn R, Fath P, . Latest results on semitransparent POWER silicon solar cells. Solar Energy Materials and Solar Cells , 2001, 65(1–4): 549-553
doi: 10.1016/S0927-0248(00)00139-2
Boueke A, Kuhn R, Fath P, et al. Latest results onsemitransparent POWER silicon solar cells. Solar Energy Materials and Solar Cells, 2001, 65(1–4): 549―553

doi: 10.1016/S0927-0248(00)00139-2
3 Zhang Q-C. Recent progress in high-temperature solar selective coatings. Solar Energy Materials and Solar Cells , 2000, 62(1–2): 63-74
doi: 10.1016/S0927-0248(99)00136-1
Zhang Q-C. Recent progress in high-temperature solarselective coatings. Solar Energy Materialsand Solar Cells, 2000, 62(1–2): 63―74

doi: 10.1016/S0927-0248(99)00136-1
4 Coutts T J. A review of progress in thermophotovoltaic generation of electricity. Renewable and Sustainable Energy Reviews , 1999, 3(2): 77-184
doi: 10.1016/S1364-0321(98)00021-5
Coutts T J. A review of progress in thermophotovoltaicgeneration of electricity. Renewable andSustainable Energy Reviews, 1999, 3(2): 77―184

doi: 10.1016/S1364-0321(98)00021-5
5 Heinzel A, Boerner V, Gombert A, . Radiation filters and emitters for the NIR based on periodically structured metal surfaces. Journal of Modern Optics , 2000, 47(13): 2399-2419
Heinzel A, Boerner V, Gombert A, et al. Radiation filters and emitters for the NIR basedon periodically structured metal surfaces. Journal of Modern Optics, 2000, 47(13): 2399―2419
6 Sai H, Yugami H, Akiyama Y, . Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region. Journal of the Optical Society of America A , 2001, 18(7): 1471-1476
doi: 10.1364/JOSAA.18.001471
Sai H, Yugami H, Akiyama Y, et al. Spectral controlof thermal emission by periodic microstructured surfaces in the near-infraredregion. Journal of the Optical Societyof America A, 2001, 18(7): 1471―1476

doi: 10.1364/JOSAA.18.001471
7 Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied Physics Letters , 2003, 83(2): 380-382
doi: 10.1063/1.1592614
Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystalemitter for thermal photovoltaic power generation. Applied Physics Letters, 2003, 83(2): 380―382

doi: 10.1063/1.1592614
8 Timans P J, Sharangpani R, Thakur R P S. Rapid thermal processing. Handbook of Semiconductor Manufacturing Technology . Marcel Dekker, New York, 2000, 201-286
Timans P J, Sharangpani R, Thakur R P S. Rapid thermal processing. Handbook of Semiconductor Manufacturing Technology. Marcel Dekker, New York, 2000, 201―286
9 Zhang Z M. Surface temperature measurement using optical techniques. Annual Review of Heat Transfer (C.L. Tien, ed) . Begell House, New York, 2000, 351-411
Zhang Z M. Surface temperature measurement using optical techniques. Annual Review of Heat Transfer (C.L. Tien, ed). Begell House, New York, 2000, 351―411
10 Naqvi S S H, Krukar R H, McNeil J R, . Etch depth estimation of large-period silicon gratings with multivariate calibration of rigorously simulated diffraction profiles. Journal of the Optical Society of America A , 1994, 11(9): 2485-2493
doi: 10.1364/JOSAA.11.002485
Naqvi S S H, Krukar R H, McNeil J R, et al. Etch depth estimationof large-period silicon gratings with multivariate calibration ofrigorously simulated diffraction profiles. Journal of the Optical Society of America A, 1994, 11(9): 2485―2493

doi: 10.1364/JOSAA.11.002485
11 Coulombe S A, Minhas B K, Raymond C J, . Scatterometry measurement of sub-0.1 μm linewidth Gratings. Journal of Vacuum Science and Technology B , 1998, 16(1): 80-87
doi: 10.1116/1.589840
Coulombe S A, Minhas B K, Raymond C J, et al. Scatterometry measurement of sub-0.1 μm linewidth Gratings. Journal of Vacuum Science and Technology B, 1998, 16(1): 80―87

doi: 10.1116/1.589840
12 Greffet J-J, Carminati R, Joulain K, . Coherent emission of light by thermal sources. Nature , 2002, 416(6876): 61-64
doi: 10.1038/416061a
Greffet J-J, Carminati R, Joulain K, et al. Coherent emissionof light by thermal sources. Nature, 2002, 416(6876): 61―64

doi: 10.1038/416061a
13 Marquier F, Joulain K, Mulet J-P, . Coherent spontaneous emission of light by thermal sources. Physical Review B , 2004, 69(15): 155412
doi: 10.1103/PhysRevB.69.155412
Marquier F, Joulain K, Mulet J-P, et al. Coherent spontaneousemission of light by thermal sources. PhysicalReview B, 2004, 69(15): 155412

doi: 10.1103/PhysRevB.69.155412
14 Lezec H J, Degiron A, Devaux E, . Beam light from a subwavelength aperture. Science , 2002, 297(5582): 820-822
doi: 10.1126/science.1071895
Lezec H J, Degiron A, Devaux E, et al. Beam light froma subwavelength aperture. Science, 2002, 297(5582): 820―822

doi: 10.1126/science.1071895
15 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science , 2001, 292(5514): 77-79
doi: 10.1126/science.1058847
Shelby R A, Smith D R, Schultz S. Experimental verificationof a negative index of refraction. Science, 2001, 292(5514): 77―79

doi: 10.1126/science.1058847
16 Engheta N, Ziolkowski R W, eds. Electromagnetic Metamaterials: Physics and Engineering Explorations. Wiley-IEEE Press, New York, 2006
Engheta N, Ziolkowski R W, eds. Electromagnetic Metamaterials:Physics and Engineering Explorations. Wiley-IEEEPress, New York, 2006
17 Soukoulis C M, Linden S, Wegener M. Negative refractive index at optical wavelengths. Science , 2007, 315(5808): 47-49
doi: 10.1126/science.1136481
Soukoulis C M, Linden S, Wegener M. Negativerefractive index at optical wavelengths. Science, 2007, 315(5808): 47―49

doi: 10.1126/science.1136481
18 Shalaev V M. Optical negative-index metamaterials. Nature Photonics , 2007, 1(1): 41-48
doi: 10.1038/nphoton.2006.49
Shalaev V M. Optical negative-index metamaterials. Nature Photonics, 2007, 1(1): 41―48

doi: 10.1038/nphoton.2006.49
19 Valentine J, Zhang S, Zentgraf T, . Three-dimensional optical metamaterial with a negative refractive index. Nature , 2008, 455(7211): 376-379
doi: 10.1038/nature07247
Valentine J, Zhang S, Zentgraf T, et al. Three-dimensionaloptical metamaterial with a negative refractive index. Nature, 2008, 455(7211): 376―379

doi: 10.1038/nature07247
20 Zhang Z M, Fu C J, Zhu Q Z. Optical and radiative properties of semiconductors related to micro/nanotechnology. Advances in Heat Transfer , 2003, 37: 179-296
Zhang Z M, Fu C J, Zhu Q Z. Optical and radiative properties of semiconductors relatedto micro/nanotechnology. Advances in HeatTransfer, 2003, 37: 179―296
21 Veselago V G. The electrodynamics of substances with simultaneously negative values of ? and μ. Soviet Physics Uspekhi , 1968, 10(4): 509-514
doi: 10.1070/PU1968v010n04ABEH003699
Veselago V G. The electrodynamics of substanceswith simultaneously negative values of ϵ and μ. Soviet Physics Uspekhi, 1968, 10(4): 509―514

doi: 10.1070/PU1968v010n04ABEH003699
22 Pendry J B. Negative index makes a perfect lens. Physical Review Letters , 2000, 85(18): 3966-3969
doi: 10.1103/PhysRevLett.85.3966
Pendry J B. Negative index makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966―3969

doi: 10.1103/PhysRevLett.85.3966
23 Ramakrishna S A. Physics of negative refractive index materials. Reports on Progress in Physics , 2005, 68(2): 449-521
doi: 10.1088/0034-4885/68/2/R06
Ramakrishna S A. Physics of negative refractiveindex materials. Reports on Progress inPhysics, 2005, 68(2): 449―521

doi: 10.1088/0034-4885/68/2/R06
24 Fu C J. Radiative properties of emerging materials and radiation heat transfer at the nanoscale. Ph.D.dissertation , Georgia Institute of Technology, Atlanta, Georgia, USA, 2004
Fu C J. Radiative properties of emerging materials and radiation heat transferat the nanoscale. Ph.D.dissertation, Georgia Institute of Technology, Atlanta, Georgia, USA, 2004
25 Zhang Z M. Nano/Microscale Heat Transfer. McGraw-Hill, New York, 2007
Zhang Z M. Nano/Microscale Heat Transfer. McGraw-Hill, New York, 2007
26 Pendry J B, Holden A J, Stewart W J, . Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters , 1996, 76(25): 4773-4776
doi: 10.1103/PhysRevLett.76.4773
Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequencyplasmons in metallic mesostructures. PhysicalReview Letters, 1996, 76(25): 4773―4776

doi: 10.1103/PhysRevLett.76.4773
27 Pendry J B, Holden A J, Rubbins D J, . Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques , 1999, 47(11): 2075-2084
doi: 10.1109/22.798002
Pendry J B, Holden A J, Rubbins D J, et al. Magnetism from conductorsand enhanced nonlinear phenomena. IEEETransactions on Microwave Theory and Techniques, 1999, 47(11): 2075―2084

doi: 10.1109/22.798002
28 Reddick R C, Warmack R J, Ferrell T J. New form of scanning optical microcopy. Physical Review B , 1989. 39(1): 767-770
doi: 10.1103/PhysRevB.39.767
Reddick R C, Warmack R J, Ferrell T J. New form of scanning opticalmicrocopy. Physical Review B, 1989. 39(1): 767―770

doi: 10.1103/PhysRevB.39.767
29 Shen Y, Jakubczyk D, Xu F, . Two-photon fluorescence imaging and spectroscopy of nanostructure organic materials using a photon scanning tunneling microscope. Applied Physics Letters , 2000, 76(1): 1-3
doi: 10.1063/1.125637
Shen Y, Jakubczyk D, Xu F, et al. Two-photon fluorescenceimaging and spectroscopy of nanostructure organic materials usinga photon scanning tunneling microscope. Applied Physics Letters, 2000, 76(1): 1―3

doi: 10.1063/1.125637
30 Fu C J, Zhang Z M. Nanoscale radiation heat transfer for silicon at different doping levels. International Journal of Heat and Mass Transfer , 2006, 49(9,10): 1703-1718
Fu C J, Zhang Z M. Nanoscale radiation heattransfer for silicon at different doping levels. International Journal of Heat and Mass Transfer, 2006, 49(9,10): 1703―1718
31 Whale M D, Cravalho E G. Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Transactions on Energy Conversion , 2002, 17(1): 130-142
doi: 10.1109/60.986450
Whale M D, Cravalho E G. Modeling and performance of microscale thermophotovoltaic energyconversion devices. IEEE Transactions onEnergy Conversion, 2002, 17(1): 130―142

doi: 10.1109/60.986450
32 Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Applied Physics Letters , 2003, 82(20): 3544-3546
doi: 10.1063/1.1575936
Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Applied Physics Letters, 2003, 82(20): 3544―3546

doi: 10.1063/1.1575936
33 Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin:Springer-Verlag, 1988
Raether H. SurfacePlasmons on Smooth and Rough Surfaces and on Gratings. Berlin:Springer-Verlag, 1988
34 Rupin R. Surface polaritons of a left-handed medium. Physics Letters A , 2000, 277(1): 61-64
doi: 10.1016/S0375-9601(00)00694-0
Rupin R. Surface polaritons of a left-handed medium. Physics Letters A, 2000, 277(1): 61―64

doi: 10.1016/S0375-9601(00)00694-0
35 Kawata S, ed. Near-field Optics and Surface Plasmon Polaritons. Berlin:Springer, 2001
Kawata S, ed. Near-field Optics and Surface Plasmon Polaritons. Berlin:Springer, 2001
36 Tominaga J, Tsai D P, eds. Optical Nanotechnologies-The Manipulation of Surface and Local Plasmons. Berlin:Springer, ,2003
Tominaga J, Tsai D P, eds. Optical Nanotechnologies-TheManipulation of Surface and Local Plasmons. Berlin:Springer, ,2003
37 Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review. Sensors and Actuators B , 1999, 54(1,2): 3-15
Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review. Sensors and Actuators B, 1999, 54(1,2): 3―15
38 Hillenbrand R, Taubner T, Kellmann F. Phonon-enhanced light-matter interaction at the nanometer scale. Nature , 2002, 418(6894): 159–162 ; Hillenbrand R. Towards phonon photonics: Scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction. Ultramicroscopy , 2004, 100(3,4): 421-427
Hillenbrand R, Taubner T, Kellmann F. Phonon-enhanced light-matter interaction at the nanometerscale. Nature, 2002, 418(6894): 159–162; Hillenbrand R. Towards phonon photonics:Scattering-type near-field optical microscopy reveals phonon-enhancednear-field interaction. Ultramicroscopy, 2004, 100(3,4): 421―427
39 Maystre D, ed. Selected Papers on Diffraction Gratings. SPIE Milestone Series 83, The International Society for Optical Engineering, Bellingham, WA , 1993
Maystre D, ed. Selected Papers on Diffraction Gratings. SPIE Milestone Series 83, The International Society for Optical Engineering,Bellingham, WA, 1993
40 Petit R, ed. Electromagnetic Theory of Gratings. Berlin:Springer, 1980
Petit R, ed. Electromagnetic Theory of Gratings. Berlin:Springer, 1980
41 Chen Y-B, Zhang Z M, Timans P J. Radiative properties of patterned wafers with nanoscale linewidth. Journal of Heat Transfer , 2007, 129(1): 79-90
doi: 10.1115/1.2401201
Chen Y-B, Zhang Z M, Timans P J. Radiative properties of patternedwafers with nanoscale linewidth. Journalof Heat Transfer, 2007, 129(1): 79―90

doi: 10.1115/1.2401201
42 Lee B J, Chen Y-B, Zhang Z M. Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared. Journal of Computational and Theoretical Nanoscience , 2008, 5(2): 201-213
Lee B J, Chen Y-B, Zhang Z M. Transmission enhancement through nanoscale metallic slitarrays from the visible to mid-infrared. Journal of Computational and Theoretical Nanoscience, 2008, 5(2): 201―213
43 Fu K, Chen Y-B, Hsu P-F, . Device scaling effect on the spectral-directional absorptance of wafer’s front side. International Journal of Heat and Mass Transfer , 2008, 51(19,20): 4911-4925
Fu K, Chen Y-B, Hsu P-F, et al. Device scaling effect on the spectral-directionalabsorptance of wafer’s front side. International Journal of Heat and Mass Transfer, 2008, 51(19,20): 4911―4925
44 Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals. Princeton, NJ:Princeton University Press, 1995
Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals. Princeton, NJ:Princeton University Press, 1995
45 Sakoda K. Optical Properties of Photonic Crystals. Berlin:Springer-Verlag, 2001
Sakoda K. OpticalProperties of Photonic Crystals. Berlin:Springer-Verlag, 2001
46 Kitttel C. Introduction to Solid State Physics, 8th ed. New York:Wiley, 2004
Kitttel C. Introductionto Solid State Physics, 8th ed. New York:Wiley, 2004
47 Macleod H A. Thin Film Optical Filters, 3rd ed. Bristol, UK:Institute of Physics, 2001
Macleod H A. Thin Film Optical Filters, 3rd ed. Bristol, UK:Institute of Physics, 2001
48 Yeh P. Optical Waves in Layered Media. Wiley, New York, 1988; Yeh P, Yariv A, Hong C S. Electromagnetic propagation in periodic stratified media. I. General theory. Journal of the Optical Society of America , 1977, 67(4): 423-438
doi: 10.1364/JOSA.67.000423
Yeh P. Optical Waves in Layered Media. Wiley, New York, 1988; Yeh P, Yariv A, Hong C S. Electromagnetic propagation in periodic stratified media.I. General theory. Journal of the OpticalSociety of America, 1977, 67(4): 423―438

doi: 10.1364/JOSA.67.000423
49 Zhang Z M, Fu C J. Unusual photon tunneling in the presence of a layer with a negative refractive index. Applied Physics Letters , 2002, 80(6): 1097-1099
doi: 10.1063/1.1448172
Zhang Z M, Fu C J. Unusual photon tunneling in the presence of a layer with a negativerefractive index. Applied Physics Letters, 2002, 80(6): 1097―1099

doi: 10.1063/1.1448172
50 Fu C J, Zhang, Z M. Transmission enhancement using a negative-refraction layer. Microscale Thermophysical Engineering , 2003, 7(3): 221-234
doi: 10.1080/10893950390219065
Fu C J, Zhang, Z M. Transmission enhancement using a negative-refraction layer. Microscale Thermophysical Engineering, 2003, 7(3): 221―234

doi: 10.1080/10893950390219065
51 Fu C J, Zhang Z M, Tanner D B. Energy transmission by photon tunneling in multilayer structures including negative index materials. Journal of Heat Transfer , 2005, 127(9): 1046-1052
doi: 10.1115/1.2010495
Fu C J, Zhang Z M, Tanner D B. Energy transmission by photontunneling in multilayer structures including negative index materials. Journal of Heat Transfer, 2005, 127(9): 1046―1052

doi: 10.1115/1.2010495
52 Park K, Lee B J, Fu C J, . Study of the surface and bulk polaritons with a negative index metamaterials. Journal of the Optical Society of America B , 2005, 22(5): 1016-1023
doi: 10.1364/JOSAB.22.001016
Park K, Lee B J, Fu C J, et al. Study of the surfaceand bulk polaritons with a negative index metamaterials. Journal of the Optical Society of America B, 2005, 22(5): 1016―1023

doi: 10.1364/JOSAB.22.001016
53 Liu Z, Hu L, Lin Z. Enhancing photon tunneling by a slab of uniaxially anisotropic left-handed material. Physics Letters A , 2003, 308(4): 294-301
doi: 10.1016/S0375-9601(03)00058-6
Liu Z, Hu L, Lin Z. Enhancing photon tunnelingby a slab of uniaxially anisotropic left-handed material. Physics Letters A, 2003, 308(4): 294―301

doi: 10.1016/S0375-9601(03)00058-6
54 Gao L, Tang C J. Near-field imaging by a multi-layer structure consisting of alternate right-handed and left-handed materials. Physics Letters A , 2004, 322(5,6): 390-395
Gao L, Tang C J. Near-field imaging by a multi-layerstructure consisting of alternate right-handed and left-handed materials. Physics Letters A, 2004, 322(5,6): 390―395
55 Kim K-Y. Photon tunneling in composite layers of negative- and positive-index media. Physical Review E , 2004, 70(4): 047603
doi: 10.1103/PhysRevE.70.047603
Kim K-Y. Photon tunneling in composite layersof negative- and positive-index media. Physical Review E, 2004, 70(4): 047603

doi: 10.1103/PhysRevE.70.047603
56 Chen Y-Y, Huang Z-M, Wang Q, . Photon tunneling in one-dimensional metamaterial photonic crystals. Journal of Optics A: Pure and Applied Optics , 2005, 7(9): 519-524
doi: 10.1088/1464-4258/7/9/012
Chen Y-Y, Huang Z-M, Wang Q, et al. Photon tunnelingin one-dimensional metamaterial photonic crystals. Journal of Optics A: Pure and Applied Optics, 2005, 7(9): 519―524

doi: 10.1088/1464-4258/7/9/012
57 Fang Y-T, Zhou J, Pun E Y B. High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials. Applied Physics B , 2007, 86(4): 587-591
doi: 10.1007/s00340-006-2494-5
Fang Y-T, Zhou J, Pun E Y B. High-Q filters based on one-dimensionalphotonic crystals using epsilon-negative materials. Applied Physics B, 2007, 86(4): 587―591

doi: 10.1007/s00340-006-2494-5
58 Siegel R, Howell J R. Thermal Radiation Heat Transfer, 4th ed. New York: Taylor and Francis , 2002
Siegel R, Howell J R. Thermal Radiation Heat Transfer,4th ed. NewYork: Taylor and Francis , 2002
59 Hesketh P J, Zemel J N, Gebhart B. Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature , 1986, 324: 549-551
doi: 10.1038/324549a0
Hesketh P J, Zemel J N, Gebhart B. Organ pipe radiant modesof periodic micromachined silicon surfaces. Nature, 1986, 324: 549―551

doi: 10.1038/324549a0
60 Hesketh P J, Gebhart B, Zemel J N. Measurements of the spectral and directional emission from microgrooved silicon surfaces. Journal of Heat Transfer , 1988, 110(3): 680-686
Hesketh P J, Gebhart B, Zemel J N. Measurements of the spectral and directional emissionfrom microgrooved silicon surfaces. Journalof Heat Transfer, 1988, 110(3): 680―686
61 Dimenna R A, Buckius R O. Electromagnetic theory predictions of the directional scattering from triangular surfaces. Journal of Heat Transfer , 1994, 116(3): 639-645
doi: 10.1115/1.2910917
Dimenna R A, Buckius R O. Electromagnetic theory predictions of the directional scatteringfrom triangular surfaces. Journal of HeatTransfer, 1994, 116(3): 639―645

doi: 10.1115/1.2910917
62 Tang K, Buckius R O. Bi-directional reflection measurements from two-dimensional microcontoured metallic surfaces. Microscale Thermophysical Engineering , 1998, 2(4): 245-260
doi: 10.1080/108939598199892
Tang K, Buckius R O. Bi-directional reflection measurements from two-dimensional microcontouredmetallic surfaces. Microscale ThermophysicalEngineering, 1998, 2(4): 245―260

doi: 10.1080/108939598199892
63 Sai H, Yugami H, Kanamori Y, . Spectrally selective thermal radiators and absorbers with periodic microstructured surfaces for high-temperature applications. Microscale Thermophysical Engineering , 2003, 7(2): 101-115
doi: 10.1080/10893950390203305
Sai H, Yugami H, Kanamori Y, et al. Spectrally selectivethermal radiators and absorbers with periodic microstructured surfacesfor high-temperature applications. MicroscaleThermophysical Engineering, 2003, 7(2): 101―115

doi: 10.1080/10893950390203305
64 Seager C H, Sinclair M B, Fleming J G. Accurate measurements of thermal radiation from a tungsten photonic lattice. Applied Physics Letters , 2005, 86(24): 244105
doi: 10.1063/1.1941460
Seager C H, Sinclair M B, Fleming J G. Accurate measurements ofthermal radiation from a tungsten photonic lattice. Applied Physics Letters, 2005, 86(24): 244105

doi: 10.1063/1.1941460
65 Chen Y-B, Zhu Q Z, Wright T L, . Bidirectional reflection measurements of periodically microstructured silicon surfaces. International Journal of Thermophysics , 2004, 25(4): 1235-1252
doi: 10.1023/B:IJOT.0000038512.28195.5c
Chen Y-B, Zhu Q Z, Wright T L, et al. Bidirectional reflection measurements of periodically microstructuredsilicon surfaces. International Journalof Thermophysics, 2004, 25(4): 1235―1252

doi: 10.1023/B:IJOT.0000038512.28195.5c
66 Kreiter M, Oster J, Sambles R, . Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons. Optics Communications , 1999, 168(1-4): 117-122
doi: 10.1016/S0030-4018(99)00328-4
Kreiter M, Oster J, Sambles R, et al. Thermally inducedemission of light from a metallic diffraction grating, mediated bysurface plasmons. Optics Communications, 1999, 168(1―4): 117―122

doi: 10.1016/S0030-4018(99)00328-4
67 Fu C J, Zhang Z M, Tanner D B. Planar heterogeneous structures for coherent emission of radiation. Optics Letters , 2005, 30(14): 1873-1875
doi: 10.1364/OL.30.001873
Fu C J, Zhang Z M, Tanner D B. Planar heterogeneous structuresfor coherent emission of radiation. OpticsLetters, 2005, 30(14): 1873―1875

doi: 10.1364/OL.30.001873
68 Fu C J, Zhang Z M. Further investigation of coherent thermal emission from single negative materials. Nanoscale and Microscale Thermophysical Engineering , 2008, 12(1): 83-97
doi: 10.1080/15567260701866744
Fu C J, Zhang Z M. Further investigation of coherent thermal emission from single negativematerials. Nanoscale and Microscale ThermophysicalEngineering, 2008, 12(1): 83―97

doi: 10.1080/15567260701866744
69 Smith D R, Padilla W J, Vier D C, . Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters , 2000, 84(18): 4184-4187
doi: 10.1103/PhysRevLett.84.4184
Smith D R, Padilla W J, Vier D C, et al. Composite mediumwith simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184―4187

doi: 10.1103/PhysRevLett.84.4184
70 Yen T J, Padilla W J, Fang N, . Terahertz magnetic response from artificial materials. Science , 2004, 303(5663): 1494-1496
doi: 10.1126/science.1094025
Yen T J, Padilla W J, Fang N, et al. Terahertz magneticresponse from artificial materials. Science, 2004, 303(5663): 1494―1496

doi: 10.1126/science.1094025
71 Linden S, Enkrich C, Wegener M, . Magnetic response of metamaterials at 100 terahertz. Science , 2004, 306(5700): 1351-1353
doi: 10.1126/science.1105371
Linden S, Enkrich C, Wegener M, et al. Magnetic responseof metamaterials at 100 terahertz. Science, 2004, 306(5700): 1351―1353

doi: 10.1126/science.1105371
72 Enkrich C, Wegener M, Linden S, . Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters , 2005, 95(20): 203901
doi: 10.1103/PhysRevLett.95.203901
Enkrich C, Wegener M, Linden S, et al. Magnetic metamaterialsat telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901

doi: 10.1103/PhysRevLett.95.203901
73 Lagarkov A N, Sarychev A K. Electromagnetic properties of composites containing elongated conducting inclusions. Physical Review B , 1996, 53(10): 6318-6336
doi: 10.1103/PhysRevB.53.6318
Lagarkov A N, Sarychev A K. Electromagnetic properties of composites containing elongatedconducting inclusions. Physical ReviewB, 1996, 53(10): 6318―6336

doi: 10.1103/PhysRevB.53.6318
74 Podolskiy V A, Sarychev A K, Shalaev V M. Plasmon modes in metal nanowires and left-handed materials. Journal of Nonlinear Optical Physics and Materials , 2002, 11(1): 65-74
doi: 10.1142/S0218863502000833
Podolskiy V A, Sarychev A K, Shalaev V M. Plasmon modes in metal nanowires and left-handed materials. Journal of Nonlinear Optical Physics and Materials, 2002, 11(1): 65―74

doi: 10.1142/S0218863502000833
75 Dolling D, Enkrich C, Wegener M, . Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics Letters , 2005, 30(23): 3198-3200
doi: 10.1364/OL.30.003198
Dolling D, Enkrich C, Wegener M, et al. Cut-wire pairs andplate pairs as magnetic atoms for optical metamaterials. Optics Letters, 2005, 30(23): 3198―3200

doi: 10.1364/OL.30.003198
76 Shalaev V M, Cai W S, Chettiar U K, . Negative index of refraction in optical metamaterials. Optics Letters , 2005, 30(24): 3356-3358
doi: 10.1364/OL.30.003356
Shalaev V M, Cai W S, Chettiar U K, et al. Negative index ofrefraction in optical metamaterials. OpticsLetters, 2005, 30(24): 3356―3358

doi: 10.1364/OL.30.003356
77 Zhou J F, Zhang L, Tuttle G, . Negative index materials using simple short wire pairs. Physical Review B , 2006, 73(4): 041101(R)
doi: 10.1103/PhysRevB.73.041101
Zhou J F, Zhang L, Tuttle G, et al. Negative index materialsusing simple short wire pairs. PhysicalReview B, 2006, 73(4): 041101(R)

doi: 10.1103/PhysRevB.73.041101
78 Yuan H K, Chettiar U K, Cai W S, . A negative permeability material at red light. Optics Express , 2007, 15(3): 1076-1083
doi: 10.1364/OE.15.001076
Yuan H K, Chettiar U K, Cai W S, et al. A negative permeabilitymaterial at red light. Optics Express, 2007, 15(3): 1076―1083

doi: 10.1364/OE.15.001076
79 Zhang S, Fan W J, Panoiu N C, . Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters , 2005, 95(13): 137404
doi: 10.1103/PhysRevLett.95.137404
Zhang S, Fan W J, Panoiu N C, et al. Experimental demonstrationof near-infrared negative-index metamaterials. Physical Review Letters, 2005, 95(13): 137404

doi: 10.1103/PhysRevLett.95.137404
80 Dolling G, Enkrich C, Wegener M, . Simultaneous negative phase and group velocity of light in a metamaterial. Science , 2006, 312(5775): 892-894
doi: 10.1126/science.1126021
Dolling G, Enkrich C, Wegener M, et al. Simultaneous negativephase and group velocity of light in a metamaterial. Science, 2006, 312(5775): 892―894

doi: 10.1126/science.1126021
81 Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express , 2008, 16(15): 11328-11336
doi: 10.1364/OE.16.011328
Lee B J, Wang L P, Zhang Z M. Coherent thermal emissionby excitation of magnetic polaritons between periodic strips and ametallic film. Optics Express, 2008, 16(15): 11328―11336

doi: 10.1364/OE.16.011328
82 Li T, Wang S M, Liu H, . Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials. Journal of Applied Physics , 2008, 103(2): 023104
doi: 10.1063/1.2828178
Li T, Wang S M, Liu H, et al. Dispersion of magnetic plasmonpolaritons in perforated trilayer metamaterials. Journal of Applied Physics, 2008, 103(2): 023104

doi: 10.1063/1.2828178
83 Basu S, Chen Y-B, Zhang Z M. Microscale radaition in thermophotovoltaic devices- a review. International Journal of Energy Research , 2007, 31(6,7): 689-716
Basu S, Chen Y-B, Zhang Z M. Microscale radaition in thermophotovoltaic devices- areview. International Journal of EnergyResearch, 2007, 31(6,7): 689―716
84 Sai H, Kanamori Y, Yugami H. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. Journal of Micromechanics and Microengineering , 2005, 15(9): S243-S249
doi: 10.1088/0960-1317/15/9/S12
Sai H, Kanamori Y, Yugami H. Tuning of the thermal radiationspectrum in the near-infrared region by metallic surface microstructures. Journal of Micromechanics and Microengineering, 2005, 15(9): S243―S249

doi: 10.1088/0960-1317/15/9/S12
85 Chen Y-B, Zhang Z M. Design of tungsten complex gratings for thermophotovoltaic radiatiors. Optics Communications , 2007, 269(2): 411-417
doi: 10.1016/j.optcom.2006.08.040
Chen Y-B, Zhang Z M. Design of tungsten complex gratings for thermophotovoltaic radiatiors. Optics Communications, 2007, 269(2): 411―417

doi: 10.1016/j.optcom.2006.08.040
86 Chen Y-B, Zhang Z M. Heavily doped silicon complex gratings as wavelength selective absorbing surfaces. Journal of Physics D: Applied Physics , 2008, 41(9): 095406
doi: 10.1088/0022-3727/41/9/095406
Chen Y-B, Zhang Z M. Heavily doped silicon complex gratings as wavelength selective absorbingsurfaces. Journal of Physics D: AppliedPhysics, 2008, 41(9): 095406

doi: 10.1088/0022-3727/41/9/095406
87 Fu C J, Tan W C. Semiconductor Thin Films Combined with Metallic Grating for Selective Improvement of Thermal Radiative Absorption/Emission. Journal of Heat Transfer (In press)
Fu C J, Tan W C. Semiconductor Thin FilmsCombined with Metallic Grating for Selective Improvement of ThermalRadiative Absorption/Emission. Journalof Heat Transfer (In press)
88 Erofeev A F, Kolpakov A V, Makhviladze T M, . Comprehensive RTP modeling and simulation. Proceedings of the 3rd International Rapid Thermal Processing Conference , 1995, 181-197
Erofeev A F, Kolpakov A V, Makhviladze T M, et al. Comprehensive RTP modeling and simulation. Proceedings of the 3rd International Rapid ThermalProcessing Conference, 1995, 181―197
89 Hebb J P, Jensen K F. The effect of patterns on thermal stress during rapid thermal processing of silicon wafers. IEEE Transactions on Semiconductor Manufacturing , 1998, 11(1): 99-107
doi: 10.1109/66.661289
Hebb J P, Jensen K F. The effect of patterns on thermal stress during rapid thermal processingof silicon wafers. IEEE Transactions onSemiconductor Manufacturing, 1998, 11(1): 99―107

doi: 10.1109/66.661289
90 Tada H, Abramson A R, Mann S E, . Evaluating the effects of thin film patterns on the temperature distribution of silicon wafers during radiant processing. Optical Engineering , 2000, 39(8): 2296-2304
doi: 10.1117/1.1305525
Tada H, Abramson A R, Mann S E, et al. Evaluating the effectsof thin film patterns on the temperature distribution of silicon wafersduring radiant processing. Optical Engineering, 2000, 39(8): 2296―2304

doi: 10.1117/1.1305525
91 Liu J, Zhang S J, Chen Y S. Rigorous electromagnetic modeling of radiative interactions with microstructures using the finite volume time-domain method. International Journal of Thermophysics , 2004, 25(4): 1281-1297
doi: 10.1023/B:IJOT.0000038516.99623.e9
Liu J, Zhang S J, Chen Y S. Rigorouselectromagnetic modeling of radiative interactions with microstructuresusing the finite volume time-domain method. International Journal of Thermophysics, 2004, 25(4): 1281―1297

doi: 10.1023/B:IJOT.0000038516.99623.e9
92 Ebbesen T W, Lezec H J, Ghaemi H F, . Extraordinary optical transmission through sub-wavelength hole arrays. Nature , 1988, 391(6668): 667-669
doi: 10.1038/35570
Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmissionthrough sub-wavelength hole arrays. Nature, 1988, 391(6668): 667―669

doi: 10.1038/35570
93 Porto J A, Garcia-Vidal F J, Pendry J B. Transmission resonances on metallic gratings with very narrow slits. Physical Review Letters , 1999, 83(14): 2845-2848
doi: 10.1103/PhysRevLett.83.2845
Porto J A, Garcia-Vidal F J, Pendry J B. Transmission resonances onmetallic gratings with very narrow slits. Physical Review Letters, 1999, 83(14): 2845―2848

doi: 10.1103/PhysRevLett.83.2845
94 Marquier F, Greffet J-J, Collin S, . Resonant transmission through a metallic film due to coupled modes. Opt Express , 2005, 13(1): 70-76
doi: 10.1364/OPEX.13.000070
Marquier F, Greffet J-J, Collin S, et al. Resonant transmissionthrough a metallic film due to coupled modes. Opt Express, 2005, 13(1): 70―76

doi: 10.1364/OPEX.13.000070
95 García-Vidal F J, Martín-Moreno L. Transmission and focusing of light in one-dimensional periodically nanostructured metals. Physical Review B , 2002, 66(15): 155412
doi: 10.1103/PhysRevB.66.155412
García-Vidal F J, Martín-Moreno L. Transmission and focusing of light inone-dimensional periodically nanostructured metals. Physical Review B, 2002, 66(15): 155412

doi: 10.1103/PhysRevB.66.155412
96 Yuan G-H, Wang P, Zhang D-G, . Extraordinary transmission through metallic grating with subwavelength slits for s-polarization illumination. Chinese Physics Letters , 2007, 24(6): 1600-1602
doi: 10.1088/0256-307X/24/6/047
Yuan G-H, Wang P, Zhang D-G, et al. Extraordinary transmissionthrough metallic grating with subwavelength slits for s-polarizationillumination. Chinese Physics Letters, 2007, 24(6): 1600―1602

doi: 10.1088/0256-307X/24/6/047
97 Li L. Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the Optical Society of America A , 1996, 13(9): 1870-1876
doi: 10.1364/JOSAA.13.001870
Li L. Use of Fourier series in the analysis of discontinuousperiodic structures. Journal of the OpticalSociety of America A, 1996, 13(9): 1870―1876

doi: 10.1364/JOSAA.13.001870
98 Lee B J, Chen Y-B, Zhang Z M. Confinement of infrared radiation to nanometer scales through metallic slit arrays. Journal of Quantitative Spectroscopy and Radiative Transfer , 2008, 109(4): 608-619
doi: 10.1016/j.jqsrt.2007.08.003
Lee B J, Chen Y-B, Zhang Z M. Confinement of infrared radiationto nanometer scales through metallic slit arrays. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(4): 608―619

doi: 10.1016/j.jqsrt.2007.08.003
99 Chen Y-B, Lee B J, Zhang Z M. Infrared radiative properties of submicron metallic slit arrays. Journal of Heat Transfer , 2008, 130(8): 082404
doi: 10.1115/1.2909614
Chen Y-B, Lee B J, Zhang Z M. Infrared radiative propertiesof submicron metallic slit arrays. Journalof Heat Transfer, 2008, 130(8): 082404

doi: 10.1115/1.2909614
100 Chan D L C, Soljacic M, Joannopoulos J D. Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs. Physical Review E , 2006, 74(3): 036615
doi: 10.1103/PhysRevE.74.036615
Chan D L C, Soljacic M, Joannopoulos J D. Direct calculation of thermalemission for three-dimensionally periodic photonic crystal slabs. Physical Review E, 2006, 74(3): 036615

doi: 10.1103/PhysRevE.74.036615
101 Narayanaswamy A, Chen G. Thermal emission control with one-dimensional metallodielectric photonic crystals. Physical Review B , 2004, 70(12): 125101
doi: 10.1103/PhysRevB.70.125101
Narayanaswamy A, Chen G. Thermal emission control with one-dimensional metallodielectricphotonic crystals. Physical Review B, 2004, 70(12): 125101

doi: 10.1103/PhysRevB.70.125101
102 Enoch S, Simon J J, Escoubas L, . Simple layer-by-layer photonic crystal for the control of thermal emission. Applied Physics Letters , 2005, 86(26): 261101.
doi: 10.1063/1.1954881
Enoch S, Simon J J, Escoubas L, et al. Simple layer-by-layerphotonic crystal for the control of thermal emission. Applied Physics Letters, 2005, 86(26): 261101.

doi: 10.1063/1.1954881
103 Huang X, Wang D, Prakash P, Singh J. Design of computational analysis of highly reflective multiple layered thermal barrier coating structure. Materials Science and Engineering A , 2007, 460-461: 101-110
doi: 10.1016/j.msea.2007.01.067
Huang X, Wang D, Prakash P, Singh J. Design of computational analysis of highly reflectivemultiple layered thermal barrier coating structure. Materials Science and Engineering A, 2007, 460―461: 101―110

doi: 10.1016/j.msea.2007.01.067
104 Gaspar-Armenta J A, Villa F. Photonic surface-wave excitation: photonic crystal-metal interface. Journal of the Optical Society of America B , 2003, 20(11): 2349-2354
doi: 10.1364/JOSAB.20.002349
Gaspar-Armenta J A, Villa F. Photonic surface-wave excitation: photonic crystal-metalinterface. Journal of the Optical Societyof America B, 2003, 20(11): 2349―2354

doi: 10.1364/JOSAB.20.002349
105 Lee B J, Fu C J, Zhang Z M. Coherent thermal emission from one-dimensional photonic crystals. Applied Physics Letters , 2005, 879(7): 071904
doi: 10.1063/1.2010613
Lee B J, Fu C J, Zhang Z M. Coherent thermal emissionfrom one-dimensional photonic crystals. Applied Physics Letters, 2005, 879(7): 071904

doi: 10.1063/1.2010613
106 Lee B J, Zhang Z M. Coherent thermal emission from modified periodic multilayer structures. Journal of Heat Transfer , 2007, 129(1): 17-26
doi: 10.1115/1.2401194
Lee B J, Zhang Z M. Coherent thermal emission from modified periodic multilayer structures. Journal of Heat Transfer, 2007, 129(1): 17―26

doi: 10.1115/1.2401194
107 Lee B J, Zhang Z M. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics , 2006, 100(6): 063529
doi: 10.1063/1.2349472
Lee B J, Zhang Z M. Design and fabrication of planar multilayer structures with coherentthermal emission characteristics. Journalof Applied Physics, 2006, 100(6): 063529

doi: 10.1063/1.2349472
108 Lee B J, Chen Y-B, Zhang Z M. Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy. Optics Letters , 2008, 33(3): 204-206
doi: 10.1364/OL.33.000204
Lee B J, Chen Y-B, Zhang Z M. Surface waves between metallicfilms and truncated photonic crystals observed with reflectance spectroscopy. Optics Letters, 2008, 33(3): 204―206

doi: 10.1364/OL.33.000204
109 Lee B J, Zhang Z M. Indirect measurements of coherent thermal emission from a truncated photonic crystal structure. Journal of Thermophysics and Heat Transfer (accepted)
Lee B J, Zhang Z M. Indirect measurements ofcoherent thermal emission from a truncated photonic crystal structure. Journal of Thermophysics and Heat Transfer (accepted)
110 Laroche M, Carminati R, Greffet J-J. Coherent thermal antenna using a photonic crystal slab. Physical Review Letters , 2006, 96(12): 123903
doi: 10.1103/PhysRevLett.96.123903
Laroche M, Carminati R, Greffet J-J. Coherent thermal antennausing a photonic crystal slab. PhysicalReview Letters, 2006, 96(12): 123903

doi: 10.1103/PhysRevLett.96.123903
111 Chan D L C, Soljacic M, Joannopoulos J D. Thermal emission and design in 2D-periodic metallic photonic crystal slabs. Optics Express , 2006, 14(19): 8785-8796
doi: 10.1364/OE.14.008785
Chan D L C, Soljacic M, Joannopoulos J D. Thermal emission and designin 2D-periodic metallic photonic crystal slabs. Optics Express, 2006, 14(19): 8785―8796

doi: 10.1364/OE.14.008785
112 Drevillon J, Ben-Abdallah P. Ab initio design of coherent thermal sources. Journal of Applied Physics , 2007, 102(11): 114305
doi: 10.1063/1.2816244
Drevillon J, Ben-Abdallah P. Abinitio design of coherent thermal sources. Journal of Applied Physics, 2007, 102(11): 114305

doi: 10.1063/1.2816244
113 Battula A, Chen S C. Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance. Physical Review B , 2006, 74(24): 245407
doi: 10.1103/PhysRevB.74.245407
Battula A, Chen S C. Monochromatic polarized coherent emitter enhanced by surface plasmonsand a cavity resonance. Physical ReviewB, 2006, 74(24): 245407

doi: 10.1103/PhysRevB.74.245407
114 Lin K-Q, Wei L-M, Zhang D-G, . Temperature effects on prism-based surface plasmon resonance sensor. Chinese Physics Letters , 2007, 24(11): 3081-3084
doi: 10.1088/0256-307X/24/11/018
Lin K-Q, Wei L-M, Zhang D-G, et al. Temperature effectson prism-based surface plasmon resonance sensor. Chinese Physics Letters, 2007, 24(11): 3081―3084

doi: 10.1088/0256-307X/24/11/018
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed