Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  0, Vol. Issue (): 98-105   https://doi.org/10.1007/s11708-012-0171-4
  RESEARCH ARTICLE 本期目录
Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers
Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers
Jeremy J. SCHREIFELS, Shuxiao WANG, Jiming HAO()
School of Environment, Tsinghua University, Beijing 100084, China
 全文: PDF(200 KB)   HTML
Abstract

By the end of 2010, China had approximately 650 GW of coal-fired electric generating capacity producing almost 75% of the country’s total electricity generation. As a result of the heavy reliance on coal for electricity generation, emissions of air pollutants, such as nitrogen oxides (NOx), are increasing. To address these growing emissions, the Ministry of Environmental Protection (MEP) has introduced new NOx emission control policies to encourage the installation of selective catalytic reduction (SCR) technologies on a large number of coal-fired electric power plants. There is, however, limited experience with SCR in China. It is therefore useful to explore the lessons from the use of SCR technologies in other countries. This paper provides an overview of SCR technology performance at coal-fired electric power plants demonstrating emission removal rates between 65% and 92%. It also reviews the design and operational challenges that, if not addressed, can reduce the reliability, performance, and cost-effectiveness of SCR technologies. These challenges include heterogeneous flue gas conditions, catalyst degradation, ammonia slip, sulfur trioxide (SO3) formation, and fouling and corrosion of plant equipment. As China and the rest of the world work to reduce greenhouse gas emissions, carbon dioxide (CO2) emissions from parasitic load and urea-to-ammonia conversion may also become more important. If these challenges are properly addressed, SCR can reliably and effectively remove up to 90% of NOx emissions at coal-fired power plants.

Key wordsnitrogen oxides (NOx)    coal    selective catalytic reduction (SCR)    air pollution control
收稿日期: 2011-08-08      出版日期: 2012-03-05
Corresponding Author(s): HAO Jiming,Email:hjm-den@tsinghua.edu.cn   
 引用本文:   
. Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers[J]. Frontiers in Energy, 0, (): 98-105.
Jeremy J. SCHREIFELS, Shuxiao WANG, Jiming HAO. Design and operational considerations for selective catalytic reduction technologies at coal-fired boilers. Front Energ, 0, (): 98-105.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-012-0171-4
https://academic.hep.com.cn/fie/CN/Y0/V/I/98
Fig.1  
Fig.2  
1 China Electricity Council (CEC). 2011 Annual Development Report of China’s Power Industry. Beijing: CEC, 2011 (in Chinese)
2 Zhao Y, Wang S, Duan L, Lei Y, Cao P, Hao J. Primary air pollutant emissions of coal-fired power plants in China: current status and future prediction. Atmospheric Environment , 2008, 42(36): 8442-8452
doi: 10.1016/j.atmosenv.2008.08.021
3 Ministry of Environmental Protection (MEP). Report on the State of the Environment in China. Beijing: MEP, 2009.
4 US Environmental Protection Agency (EPA). Nitrogen: Multiple and Regional Impacts. Washington, DC: EPA, 2002
5 US Environmental Protection Agency (EPA). NOx Budget Trading Program 2008 Emission, Compliance, and Market Analyses. Washington , DC: EPA, 2009
6 US Environmental Protection Agency (EPA). Review of the National Ambient Air Quality Standards for Ozone: Policy Assessment of Scientific and Technical Information. Research Triangle Park , NC: EPA, 2007
7 US Environmental Protection Agency (EPA). Policy Assessment for the Review of the Particulate Matter National Ambient Air Quality Standards. Research Triangle Park , NC: EPA, 2011
8 Pope C A 3rd, Ezzati M, Dockery D W. Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine , 2009, 360(4): 376-386
doi: 10.1056/NEJMsa0805646 pmid:19164188
9 Butler T J, Likens G E, Vermeylen F M, Stunder B J B. The relation between NOx emissions and precipitation NO3- in the eastern USA. Atmospheric Environment , 2003, 37(15): 2093-2104
doi: 10.1016/S1352-2310(03)00103-1
10 Streets D G, Fu J S, Jang C J, Hao J, He K, Tang X, Zhang Y, Wang Z, Li Z, Zhang Q, Wang L, Wang B, Yu C. Air quality during the 2008 Beijing Olympic games. Atmospheric Environment , 2007, 41(3): 480-492
doi: 10.1016/j.atmosenv.2006.08.046
11 Wang X, Manning W, Feng Z, Zhu Y. Ground-level ozone in China: distribution and effects on crop yields. Environmental Pollution , 2007, 147(2): 394-400
doi: 10.1016/j.envpol.2006.05.006 pmid:16973249
12 Chan C K, Yao X. Air pollution in mega cities in China. Atmospheric Environment , 2008, 42(1): 1-42
doi: 10.1016/j.atmosenv.2007.09.003
13 Xu J, Zhang Y, Fu J S, Zheng S, Wang W. Process analysis of typical summertime ozone episodes over the Beijing area. The Science of the Total Environment , 2008, 399(1-3): 147-157
doi: 10.1016/j.scitotenv.2008.02.013 pmid:18455756
14 Zhang J, Mauzerall D L, Zhu T, Liang S, Ezzati M, Remais J V. Environmental health in China: progress towards clean air and safe water. Lancet , 2010, 375(9720): 1110-1119
doi: 10.1016/S0140-6736(10)60062-1 pmid:20346817
15 Tan J H, Duan J C, Chen D H, Wang X H, Guo S J, Bi X H, Sheng G Y, He K B, Fu J M. Chemical characteristics of haze during summer and winter in Guangzhou. Atmospheric Research , 2009, 94(2): 238-245
doi: 10.1016/j.atmosres.2009.05.016
16 Tan J, Duan J, He K, Ma Y, Duan F, Chen Y, Fu J. Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou. Journal of Environmental Sciences (China) , 2009, 21(6): 774-781
doi: 10.1016/S1001-0742(08)62340-2 pmid:19803082
17 Hu M, Wu Z, Slanina J, Lin P, Liu S, Zeng L. Acidic gases, ammonia and water-soluble ions in PM2.5 at a coastal site in the Pearl River Delta, China. Atmospheric Environment , 2008, 42(25): 6310-6320
doi: 10.1016/j.atmosenv.2008.02.015
18 Zhao X, Zhang X, Xu X, Xu J, Meng W, Pu W. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmospheric Environment , 2009, 43(18): 2893-2900
doi: 10.1016/j.atmosenv.2009.03.009
19 Ye B, Ji X, Yang H, Yao X, Chan C K, Cadle S H, Chan T, Mulawa P A. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period. Atmospheric Environment , 2003, 37(4): 499-510
doi: 10.1016/S1352-2310(02)00918-4
20 Song Y, Tang X, Xie S, Zhang Y, Wei Y, Zhang M, Zeng L, Lu S.Source apportionment of PM2.5 in Beijing in 2004. Journal of Hazardous Materials , 2007, 146(1,2): 124-130
21 Zhao Y, Duan L, Xing J, Larssen T, Nielsen C P, Hao J. Soil acidification in China: is controlling SO2 emissions enough? Environmental Science & Technology , 2009, 43(21): 8021-8026
doi: 10.1021/es901430n pmid:19924917
22 Meng Z Y, Xu X B, Wang T, Zhang X Y, Yu X L, Wang S F, Lin W L, Chen Y Z, Jiang Y A, An X Q. Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background and rural sites in China during 2007-2008. Atmospheric Environment , 2010, 44(21-22): 2625-2631
doi: 10.1016/j.atmosenv.2010.04.008
23 Zhang Y, Liu X J, Fangmeier A, Goulding K T W, Zhang F S. Nitrogen inputs and isotopes in precipitation in the north China plain. Atmospheric Environment , 2008, 42(7): 1436-1448
doi: 10.1016/j.atmosenv.2007.11.002
24 Shen J L, Tang A H, Liu X J, Fangmeier A, Goulding K T W, Zhang F S. High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain. Environmental Pollution , 2009, 157(11): 3106-3113
doi: 10.1016/j.envpol.2009.05.016 pmid:19482395
25 Ministry of Environmental Protection (MEP). Emission Standard for Air Pollutants from Thermal Power Plants. GB 13223-1996 , Beijing: MEP, 1996, (in Chinese)
26 Ministry of Environmental Protection (MEP). Emission Standard for Air Pollutants from Thermal Power Plants. GB 13223-2003 , Beijing: MEP, 2003 (in Chinese)
27 Ministry of Environmental Protection (MEP). Emission Standard for Air Pollutants from Thermal Power Plants. GB 13223-2011 , Beijing: MEP, 2011 (in Chinese)
28 Wen J B. Report on the Work of the Government 2011. Beijing: National People’s Congress, 2011 (in Chinese)
29 Ministry of Environmental Protection (MEP). Notice of Issuance of Fossil-Fired Power Plant’s NOx Emission Prevention and Control Policy. Beijing: MEP, 2010 (in Chinese)
30 Srivastava R K, Hall R E, Khan S, Culligan K, Lani B W. Nitrogen oxides emission control options for coal-fired electric utility boilers. Journal of the Air & Waste Management Association , 2005, 55(9): 1367-1388
pmid:16259432
31 Radojevic M. Reduction of nitrogen oxides in flue gases. Environmental Pollution , 1998, 102( Suppl 1): 685-689
doi: 10.1016/S0269-7491(98)80099-7
32 Wu Z. NOx Control for Pulverized Coal Fired Power Stations. London: IEA Clean Coal Centre, 2002
33 Kitto J B, Stultz S C. Steam: Its Generation and Use. Barberton, Ohio: Babcock & Wilcox Company, 2005
34 Nalbandian H. NOxControl for Coal-fired Plant. London: IEA Clean Coal Centre, 2009
35 Sloss L. Nitrogen Oxides Control Technology Factbook. Norwich , NY: William Andrew Publishing, 1992
36 Chu P, Downs B, Holmes B. Sorbent and ammonia injection at economizer temperatures upstream of a economizer temperatures upstream of a high—temperature baghouse. Environment and Progress , 1990, 9(3): 149-155
doi: 10.1002/ep.670090314
37 Nalbandian H. Economics of Retrofit Air Pollution Control Technologies. London: IEA Clean Coal Centre, 2006
38 Erickson C A, Staudt J E. Selective catalytic reduction system performance and reliability review. In: Proceedings of the power plant air pollutant control “MEGA” symposium 2006 . Baltimore, MD: Air and Waste Management Association, 2006
39 Institute of Clean Air Companies (ICAC). Selective Catalytic Reduction (SCR) for Controlling NOx Emissions from Fossil Fuel Fired Electric Power Plants. Washington , DC: ICAC, 2009
40 Pritchard S, DiFrancesco C, Kaneko S, Kobayashi N, Suyama K, Lida K. Optimizing SCR catalyst design and performance for coal-fired boilers. In: EPA/EPRI Joint Symposium on Stationary Combustion NOx Control . Kansas City, Kansas: EPRI, 1995
41 Cichanowicz J E, Muzio L J. Twenty-five years of SCR evolution: implications for US application and operation. In: Proceedings of the Power Plant Air Pollutant Control “MEGA” Symposium 2001 . Baltimore, Maryland: Air and Waste Management Association, 2001
42 Rogers K J. Mixing performance characterization for optimization and development on SCR applications. In: DOE 2003 Conference on SCR/SNCR for NOx Control. Pittsburgh, Pennsylvania: DOE , 2003
43 Strege J R, Zygarlicke C J, Folkedahl B C, McCollor D P. SCR deactivation in a full-scale cofired utility boiler. Fuel , 2008, 87(7): 1341-1347
doi: 10.1016/j.fuel.2007.06.017
44 Wang J. Selective catalytic reduction (SCR). In: 2nd U.S.-China NOx and SO2 Control Workshop . Dalian: MOST, 2005
45 Bartholomew C H. Mechanisms of catalyst deactivation. Applied Catalysis A: General , 2001, 212(1,2): 17-60
46 Srivastava R K, Miller C A, Erickson C, Jambhekar R. Emissions of sulfur trioxide from coal-fired power plants. Journal of the Air & Waste Management Association , 2004, 54(6): 750-762
pmid:15242154
47 Menasha J, Dunn-Rankin D, Muzio L, Stallings J. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater. Fuel , 2011, 90(7): 2445-2453
doi: 10.1016/j.fuel.2011.03.006
48 Sobolewski H, Jancauskas J, Harrell M, Hartenstein H, Martin M. Large particle ash (LPA) screen retrofits at coal-fired units in Indiana and Ohio. In: 2006 US DOE Environmental Controls Conference. Pittsburgh, PA . Washington: DOE, 2006
49 Connell D P, Locke J E, Abrams R F, Beittel R. The Greenridge multi-pollutant control project: performance and cost results from the first year of operation. In: Proceedings of the Power Plant Air Pollutant Control “MEGA” Symposium 2008 . Baltimore, Maryland: Air and Waste Management Association, 2008
50 Senior C L, Lignell D O, Sarofim A F, Mehta A. Modeling arsenic partitioning in coal-fired power plants. Combustion and Flame , 2006, 147(3): 209-221
doi: 10.1016/j.combustflame.2006.08.005
51 Staudt J E, Engelmeyer T, Weston W H, Sigling R. The impact of arsenic on coal fired power plants equipped with SCR. In: ICAC Forum . Houston, Texas: Institute for Clean Air Companies, 2002
52 Wang M, Zheng B, Wang B, Li S, Wu D, Hu J. Arsenic concentrations in Chinese coals. Science of the Total Environment , 2006, 357(1-3): 96-102
doi: 10.1016/j.scitotenv.2005.04.045 pmid:16256172
53 Zhao Y, Zhang J, Huang W, Wang Z, Li Y, Song D, Zhao F, Zheng C. Arsenic emission during combustion of high arsenic coals from southwestern Guizhou, China. Energy Conversion and Management , 2008, 49(4): 615-624
doi: 10.1016/j.enconman.2007.07.044
54 He B, Liang L, Jiang G. Distributions of arsenic and selenium in selected Chinese coal mines. Science of the Total Environment , 2002, 296(1-3): 19-26
doi: 10.1016/S0048-9697(01)01136-6 pmid:12398324
55 Staudt J E, Engelmeyer A J. SCR catalyst management strategies-modeling and experience. In: Proceedings of COAL-GEN 2003 . Columbus, Ohio: PennWell, 2003
56 taudt J E. Minimizing the impact of SCR catalyst on total generating cost through effective catalyst management. In: Proceedings of the ASME Power Conference . Baltimore, Maryland: ASME, 2004
57 Chothani C, Morey R. Ammonium bisulfate (ABS) measurement for NOx control and air heater protection. In: Proceedings of the Power Plant Air Pollutant Control “MEGA” Symposium 2008 . Baltimore, Maryland: Air and Waste Management Association, 2008
58 Wright T, DeLallo M. Increased SO3 and ammonia slip from SCR: balancing air heater deposits, ammonia in effluent discharge, and SO3 plume. In: Proceedings of 2002 Conference on Selective Catalytic Reduction (SCR) and Selective Non-catalytic Reduction (SNCR) for NOx Control . Pittsburgh, Pennsylvania: National Energy Technology Laboratory (NETL), 2002
59 Schmidtchen P A, Hatern M J, Lombardi D E, Wajer M. High activity magnesia use for SCR related SO3 problems. In: Proceedings of 2002 Conference on Selective Catalytic Reduction (SCR) and Selective Non-catalytic Reduction (SNCR) for NOx Control . Pittsburgh, Pennsylvania: National Energy Technology Laboratory (NETL), 2002
60 Sutton M A, Erisman J W, Dentener F, M?ller D. Ammonia in the environment: from ancient times to the present. Environmental Pollution , 2008, 156(3): 583-604
doi: 10.1016/j.envpol.2008.03.013 pmid:18499318
61 Apsimon H, Kruse M, Bell J, 0. Kruse M, Bell J N B. Ammonia emissions and their role in acid deposition. Atmospheric Environment , 1987, 21(9): 1939-1946
doi: 10.1016/0004-6981(87)90154-5
62 Zhao P, Zhu T, Liang B, Hu M, Kang L, Gong J. Characteristics of mass distributions of aerosol particle and its inorganic water-soluble ions in summer over a suburb farmland in Beijing. Frontiers of Environmental Science & Engineering in China , 2007, 1(2): 159-165
doi: 10.1007/s11783-007-0028-y
63 Louie P K K, Chow J C, Chen L W A, Watson J G, Leung G, Sin D W M. PM2.5 chemical composition in Hong Kong: urban and regional variations. The Science of the Total Environment , 2005, 338(3): 267-281
doi: 10.1016/j.scitotenv.2004.07.021 pmid:15713334
64 Louie P K K, Watson J G, Chow J C, Chen A, Sin D W M, Lau A K H. Seasonal characteristics and regional transport of PM2.5 in Hong Kong. Atmospheric Environment , 2005, 39(9): 1695-1710
65 Lai S C, Zou S C, Cao J J, Lee S C, Ho K F. Characterizing ionic species in PM2.5 and PM10 in four Pearl River Delta cities, south China. Journal of Environmental Sciences (China) , 2007, 19(8): 939-947
doi: 10.1016/S1001-0742(07)60155-7 pmid:17966850
67 He K, Yang F, Ma Y, Zhang Q, Yao X, Chan C K, Cadle S, Chan T, Mulawa P. The characteristics of PM2.5 in Beijing, China. Atmospheric Environment , 2001, 35(29): 4959-4970
doi: 10.1016/S1352-2310(01)00301-6
69 Kai Z, Yuesi W, Tianxue W, Yousef M, Frank M. Properties of nitrate, sulfate and ammonium in typical polluted atmospheric aerosols (PM10) in Beijing. Atmospheric Research , 2007, 84(1): 67-77
doi: 10.1016/j.atmosres.2006.05.004
70 Zhao D W, Wang A P. Estimation of anthropogenic ammonia emissions in Asia. Atmospheric Environment , 1994, 28(4): 689-694
doi: 10.1016/1352-2310(94)90045-0
71 Zhang Y, Dore A J, Ma L, Liu X J, Ma W Q, Cape J N, Zhang F S. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environmental Pollution , 2010, 158(2): 490-501
doi: 10.1016/j.envpol.2009.08.033 pmid:19796855
72 Forzatti P, Nova I, Beretta A. Catalytic properties in deNOx and SO2-SO3 reactions. Catalysis Today , 2000, 56(4): 431-441
doi: 10.1016/S0920-5861(99)00302-8
73 Ritzenthaler D P. SO3 control: AEP pioneers and refines trona injection process for SO3 mitigation. 2007-03-01, http://www.coalpowermag.com/plant_design/SO3-Control-AEP-Pioneers-and-Refines-Trona-Injection-Process-for-SO3-Mitigation_29.html
74 Drbal L, Westra K, Boston P. Power Plant Engineering. New York: Springer-Verlag, 1995
75 Graus W H J, Worrell E. Effects of SO2 and NOx control on energy-efficiency power generation. Energy Policy , 2007, 35(7): 3898-3908
doi: 10.1016/j.enpol.2007.01.011
76 Bhattacharya S, Peters H J, Fisher J, Spencer H W III. Urea to ammonia (U2A) systems: operation and process chemistry. In: Proceedings of the power plant air pollutant control “MEGA” symposium 2003 . Washington, DC: Air and Waste Management Association, 2003
77 Spencer H W III, Peters H J, Hankins W. Design considerations for generating ammonia from urea for NOx control with SCRs. In: 2007 (100th) A&WMA Annual Conference . Pittsburgh, Pennsylvania: Air and Waste Management Association, 2007
78 Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L, eds. Climate Change 2007: the Physical Science Basis. Cambridge, UK: Cambridge University Press, 2007
79 Heck R M. Catalytic abatement of nitrogen oxides-stationary applications. Catalysis Today , 1999, 53(4): 519-523
doi: 10.1016/S0920-5861(99)00139-X
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed