Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2012, Vol. 6 Issue (1): 29-34   https://doi.org/10.1007/s11708-012-0178-x
  RESEARCH ARTICLE 本期目录
Development of oxide dispersion strengthened ferritic steels with and without aluminum
Development of oxide dispersion strengthened ferritic steels with and without aluminum
Jae Hoon LEE()
Sheet Products & Process Research Gr., POSCO Technical Research Laboratories 699, Gumho-dong, Gwangyang-si, Jeonnam 545–090, Republic of Korea
 全文: PDF(318 KB)   HTML
Abstract

Pure Fe, Cr, Al, Ti elemental powders and pre-alloyed Y2O3 powder were processed by high energy mechanical milling. The compositions of the mixed powders are designed as Fe-18Cr-0.2Ti-0.35Y2O3 and Fe-18Cr-5Al-0.2Ti-0.35Y2O3 in weight percent. The as-milled powders were consolidated by hot extrusion at 1423 K. The dispersed oxide particles were identified to be titania+ yttria for Al-free oxide dispersion strengthened (ODS) steel and alumina+ yttria for Al-added ODS steel, respectively. The ultimate tensile strength of Al-free ODS steel was higher than that of Al-added ODS steel over the temperature range of 298–973 K, because of the difference in number density and size of thermally stable oxide particles dispersed in both steel matrices. The strength in the longitudinal direction was lower than that in the transverse direction, probably due to anisotropy of the microstructure with elongated grains in the hot-extrusion direction for the 18%Cr-ODS steels with and without 5%Al.

Key wordsoxide dispersion strengthened (ODS) steel    milling    extrusion    aluminum    yttria
收稿日期: 2011-11-14      出版日期: 2012-03-05
Corresponding Author(s): LEE Jae Hoon,Email:jh-lee@posco.com   
 引用本文:   
. Development of oxide dispersion strengthened ferritic steels with and without aluminum[J]. Frontiers in Energy, 2012, 6(1): 29-34.
Jae Hoon LEE. Development of oxide dispersion strengthened ferritic steels with and without aluminum. Front Energ, 2012, 6(1): 29-34.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-012-0178-x
https://academic.hep.com.cn/fie/CN/Y2012/V6/I1/29
Fig.1  
CSiPSCrAlTiYONY2O3
18Cr-ODS0.040.02<0.0050.00217.950.190.280.140.0060.36
18Cr5Al-ODS0.050.02<0.0050.00217.844.930.170.270.140.0060.34
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Diameter/nmY/%Ti/%Al/%Y/TiY/AlSubstance
18Cr-ODS10.56.742.650.002.54Y2TiO5
2.82.532.480.001.02Y2Ti2O7
4.23.751.830.012.05Y2TiO5
18Cr5Al-ODS12.75.610.004.831.16YAlO3
7.64.860.028.310.58Y3Al5O12
2.52.850.000.03Y2O3
Tab.2  
Fig.6  
Fig.7  
1 Lee J H, Kasada R, Cho H S, Kimura A. Irradiation-induced hardening and embrittlement of high-Cr ODS ferritic steels. Journal of ASTM International , 2009, 6(8): Paper ID JAI101952
2 Lee J H, Kasada R, Kimura A, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe F. Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels. Journal of Nuclear Materials , 2011, 417(1-3): 1225-1228
doi: 10.1016/j.jnucmat.2010.12.279
3 Kimura A, Kasada R, Iwata N, Kishimoto H, Zhang C H, Isselin J, Dou P, Lee J H, Muthukumar N, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe F. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. Journal of Nuclear Materials , 2011, 417(1-3): 176-179
doi: 10.1016/j.jnucmat.2010.12.300
4 Kasada R, Lee S G, Isselin J, Lee J H, Omura T, Kimura A, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe F. Anisotropy in tensile and ductile-brittle transition behavior of ODS ferritic steels. Journal of Nuclear Materials , 2011, 417(1-3): 180-184
doi: 10.1016/j.jnucmat.2010.12.069
5 Lee J H. Microstructure and strengthening mechanisms of oxide dispersion strengthened ferritic alloy. Applied Mechanics and Materials , 2011, 87: 243-248
doi: 10.4028/www.scientific.net/AMM.87.243
6 Kaneko J, Sugamata M, Blaz L, Kamei R. Aluminum-low melting metal alloys prepared by mechanical alloying with addition of oxide. Key Engineering Materials , 2000, 188: 73-82
doi: 10.4028/www.scientific.net/KEM.188.73
7 Blaz L, Kaneko J, Sugamata M. Microstructural evolution in mechanically alloyed Al-heavy-metal oxide composites. Materials Chemistry and Physics , 2003, 81(2,3): 387-389
doi: 10.1016/S0254-0584(03)00028-2
8 Lee J H. Positron annihilation characterization of Fe-Y2O3 composite powder after mechanical alloying and heat treatment. Journal of Nanoscience and Nanotechnology , 2012 (in Press)
9 Ukai S, Harada M, Okada H, Inoue M, Nomura S, Shikakura S, Asabe K, Nishida T, Fujiwara M. Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials. Journal of Nuclear Materials , 1993, 204(1): 65-73
doi: 10.1016/0022-3115(93)90200-I
10 Capdevila C, Chen Y L, Jones A R, Bhadeshia H K D H. Grain boundary mobility in Fe-base oxide dispersion strengthened PM2000 alloy. ISIJ International , 2003, 43(5): 777-783
doi: 10.2355/isijinternational.43.777
11 Okuda T, Fujiwara M. Dispersion behaviour of oxide particles in mechanically alloyed ODS steel. Journal of Materials Science Letters , 1995, 14(22): 1600-1603
doi: 10.1007/BF00455428
12 Krautwasser P, Czyrska-Filemonowicz A, Widera M, Carsughi F.Thermal stability of dispersoids in ferritic oxide-dispersion-strengthened alloys. Materials Science and Engineering , 1994, A177(1,2): 199-208
13 Oksiuta Z, Olier P, de Carlan Y, Baluc N. Development and characterisation of a new ODS ferritic steel for fusion reactor application. Journal of Nuclear Materials , 2009, 393(1): 114-119
doi: 10.1016/j.jnucmat.2009.05.013
14 Romanoski G R, Snead L L, Klueh R L, Hoelzer D T. Development of an oxide dispersion strengthened, reduced-activation steel for fusion energy. Journal of Nuclear Materials , 2000, 283-287(1): 642-646
doi: 10.1016/S0022-3115(00)00137-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed