Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2012, Vol. 6 Issue (1): 1-11   https://doi.org/10.1007/s11708-012-0179-9
  FEATURE ARTICLE 本期目录
Ultrafast solid-liquid-vapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains
Ultrafast solid-liquid-vapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains
Jing HUANG1, Yuwen ZHANG1(), J. K. CHEN1, Mo YANG2
1. Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia MO 65211, USA; 2. College of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
 全文: PDF(335 KB)   HTML
Abstract

Effects of different parameters on the melting, vaporization and resolidification processes of thin gold film irradiated by femtosecond pulses and pulse train were systematically studied. The classical two-temperature model was adopted to depict the non-equilibrium heat transfer in electrons and lattice. The melting and resolidification processes, which was characterized by the solid-liquid interfacial velocity, as well as elevated melting temperature and depressed solidification temperature, was obtained by considering the interfacial energy balance and nucleation dynamics. Vaporization process which leads to ablation was described by tracking the location of liquid-vapor interface with an iterative procedure based on energy balance and gas kinetics law. The parameters in discussion included film thickness, laser fluence, pulse duration, pulse number, repetition rate, pulse train number, etc. Their effects on the maximum lattice temperature, melting depth and ablation depth were discussed based on the simulation results.

Key wordsmelting    evaporation    nucleation dynamics    nanoscale heat transfer
收稿日期: 2011-12-08      出版日期: 2012-03-05
Corresponding Author(s): ZHANG Yuwen,Email:zhangyu@missouri.edu   
 引用本文:   
. Ultrafast solid-liquid-vapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains[J]. Frontiers in Energy, 2012, 6(1): 1-11.
Jing HUANG, Yuwen ZHANG, J. K. CHEN, Mo YANG. Ultrafast solid-liquid-vapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains. Front Energ, 2012, 6(1): 1-11.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-012-0179-9
https://academic.hep.com.cn/fie/CN/Y2012/V6/I1/1
1 Wang G X, Prasad V. Microscale heat and mass transfer and non-equilibrium phase change in rapid solidification. Materials Science and Engineering A , 2000, 292(2): 142-148
doi: 10.1016/S0921-5093(00)01003-0
2 Hohlfeld J, Wellershoff S S, Gudde J, Conrad U, Jahnke V, Matthias E. Electron and lattice dynamics following optical excitation of metals. Chemical Physics , 2000, 251(1-3): 237-258
doi: 10.1016/S0301-0104(99)00330-4
3 Groeneveld R H M, Sprik R, Lagendijk A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Physical Review B: Condensed Matter and Materials Physics , 1995, 51(17): 11433-11445
doi: 10.1103/PhysRevB.51.11433 pmid:9977873
4 Furukawa H, Hashida M. Simulation on femto-second laser ablation. Applied Surface Science , 2002, 197-198: 114-117
doi: 10.1016/S0169-4332(02)00313-6
5 Furusawa K, Takahashi K, Kumagai H, Midorikawa K, Obara M. Ablation characteristics of au, ag, and cu metals using a femtosecond ti:Sapphire laser. Applied Physics. A, Materials Science & Processing , 1999, 69(7): S359-S366
doi: 10.1007/s003390051417
6 Corkum P B, Brunel F, Sherman N K, Srinivasan-Rao T. Thermal response of metals to ultrashort-pulse laser excitation. Physical Review Letters , 1988, 61(25): 2886-2889
doi: 10.1103/PhysRevLett.61.2886 pmid:10039253
7 Anisimov S I, Kapeliovich B L, Perel'man T L. Electron emission from metal surfaces exposed to ultra-short laser pulses. Soviet Physics, JETP , 1974, 39(2): 375-377
8 Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals. ASME Journal of Heat Transfer , 1993, 115(4): 835-841
doi: 10.1115/1.2911377
9 Tzou D Y. Macro- to Microscalse Heat Transfer, Washington , D.C.: Taylor & Francis, 1997
10 Tzou D Y. Computational techniques for microscale heat transfer. In: Minkowycz W J, Sparrow E M, Murthy J Y, eds. Handbook of Numerical Heat Transfer . 2nd ed. Hoboken, NJ: Wiley, 2006
11 Jiang L, Tsai H L. Improved two-temperature model and its application in ultrashort laser heating of metal films. Journal of Heat Transfer , 2005, 127(10): 1167-1173
doi: 10.1115/1.2035113
12 Chen J K, Tzou D Y, Beraun J E. A semiclassical two-temperature model for ultrafast laser heating. International Journal of Heat and Mass Transfer , 2006, 49(1,2): 307-316
13 Von der Linde D, Fabricius N, Danielzik B, Bonkhofer T. Solid phase superheating during picosecond laser melting of gallium arsenide. In: Materials Research Society Symposia Proceedings . Pittsburgh, PA: Materials Research Society, 1986
14 Zhang Y, Chen J K. An interfacial tracking method for ultrashort pulse laser melting and resolidification of a thin metal film. Journal of Heat Transfer , 2008, 130(6): 062401 -062410
doi: 10.1115/1.2891159
15 Chen J K, Latham W P, Beraun J E. The role of electron-phonon coupling in ultrafast laser heating. Journal of Laser Applications , 2005, 17(1): 63-68
doi: 10.2351/1.1848522
16 Chowdhury I H, Xu X. Heat transfer in femtosecond laser processing of metal. Numerical Heat Transfer. Part A: Applications , 2003, 44(3): 219-232
doi: 10.1080/716100504
17 Anisimov S I, Rethfeld B. Theory of ultrashort laser pulse interaction with a metal. In: Konov V I, Libenson M N, eds. Proceedings Of SPIE Vol 3093, St. Petersburg-Pushkin, Russia , 1997
18 Kuo L S, Qiu T. Microscale energy transfer during picosecond laser melting of metal films. In: ASME Natl Heat Transfer Conf, Baltimore , 1996
19 Klemens P G, Williams R K. Thermal conductivity of metals and alloys. Int Metals Reviews , 1986, 31(5): 197-215
20 Faghri A, Zhang Y. Transport Phenomena in Multiphase Systems, Burlington , MA: Elsevier Academic Press, 2006
21 Xu X, Chen G, Song K H. Experimental and numerical investigation of heat transfer and phase change phenomena during excimer laser interaction with nickel. International Journal of Heat and Mass Transfer , 1999, 42(8): 1371-1382
doi: 10.1016/S0017-9310(98)00272-5
22 Birks N, Meier G H, Pettit F S. Introduction to the High-Temperature Oxidation of Metals, 2nd ed. Cambridge: Cambridge University Press, 2006
23 Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W. Collapse and rebound of a laser-induced cavitation bubble. Physics of Fluids , 2001, 13(10): 2805-2819
doi: 10.1063/1.1401810
24 Huang J, Zhang Y, Chen J K. Ultrafast solid-liquid-vapor phase change in a thin gold film irradiated by multiple femtosecond laser pulses. International Journal of Heat and Mass Transfer , 2009, 52(13-14): 3091-3100
doi: 10.1016/j.ijheatmasstransfer.2009.02.009
25 Huang J, Zhang Y, Chen J K. Ultrafast solid-liquid-vapor phase change of a gold film induced by pico- to femtosecond lasers. Appl Phys A- Mater , 2009, 95(3): 643-653
26 Patankar S. Numerical Heat Transfer and Fluid Flow. New York: Taylor & Francis, 1980
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed