Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2012, Vol. 6 Issue (4): 311-340   https://doi.org/10.1007/s11708-012-0214-x
  FEATURE ARTICLE 本期目录
Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences
Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences
Qin ZHANG1, Yi ZHENG1, Jing LIU2()
1. Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2. Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
 全文: PDF(1678 KB)   HTML
Abstract

Electronics, such as printed circuit board (PCB), transistor, radio frequency identification (RFID), organic light emitting diode (OLED), solar cells, electronic display, lab on a chip (LOC), sensor, actuator, and transducer etc. are playing increasingly important roles in people’s daily life. Conventional fabrication strategy towards integrated circuit (IC), requesting at least six working steps, generally consumes too much energy, material and water, and is not environmentally friendly. During the etching process, a large amount of raw materials have to be abandoned. Besides, lithography and microfabrication are typically carried out in “Cleanroom” which restricts the location of IC fabrication and leads to high production costs. As an alternative, the newly emerging ink-jet printing electronics are gradually shaping modern electronic industry and its related areas, owing to the invention of a series of conductive inks composed of polymer matrix, conductive fillers, solvents and additives. Nevertheless, the currently available methods also encounter some technical troubles due to the low electroconductivity, complex sythesis and sintering process of the inks. As an alternative, a fundamentally different strategy was recently proposed by the authors’ lab towards truly direct writing of electronics through introduction of a new class of conductive inks made of low melting point liquid metal or its alloy. The method has been named as direct writing of electronics based on alloy and metal (DREAM) ink. A series of functional circuits, sensors, electronic elements and devices can thus be easily written on various either soft or rigid substrates in a moment. With more and more technical progresses and fundamental discoveries being kept made along this category, it was found that a new area enabled by the DREAM ink electronics is emerging, which would have tremendous impacts on future energy and environmental sciences. In order to promote the research and development along this direction, the present paper is dedicated to draft a comprehensive picture on the DREAM ink technology by summarizing its most basic features and principles. Some important low melting point metal ink candidates, especially the room temperature liquid metals such as gallium and its alloy, were collected, listed and analyzed. The merits and demerits between conventional printed electronics and the new direct writing methods were comparatively evaluated. Important scientific issues and technical strategies to modify the DREAM ink were suggested and potential application areas were proposed. Further, digestions on the impacts of the new technology among energy, health, and environmental sciences were presented. Meanwhile, some practical challenges, such as security, environment-friendly feature, steady usability, package, etc. were summarized. It is expected that the DREAM ink technology will initiate a series of unconventional applications in modern society, and even enter into peoples’ daily life in the near future.

Key wordsdirect writing of electronics based on alloy and metal (DREAM) ink    direct writing of electronics    printed electronics    liquid metal ink    integrated circuit    consumer electronics    nano liquid metal
收稿日期: 2012-08-25      出版日期: 2012-12-05
Corresponding Author(s): LIU Jing,Email:jliubme@tsinghua.edu.cn   
 引用本文:   
. Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences[J]. Frontiers in Energy, 2012, 6(4): 311-340.
Qin ZHANG, Yi ZHENG, Jing LIU. Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences. Front Energ, 2012, 6(4): 311-340.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-012-0214-x
https://academic.hep.com.cn/fie/CN/Y2012/V6/I4/311
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Alloysρ/(μΩ·cm)
Sn–10Sb26.25±2.1
Sn–10SB–0.5In27.55±1.7
Sn–10SB–1.0In29.33±1.5
Sn–10SB–1.5In30.25±1.6
Sn–10SB–2In32.37±1.8
Tab.1  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
AlloysYoung’s modulus E/GPaShear modulus/GPaBulk modulus/GPaLame’s constant/GPa?t,f
Sn–10Sb52.2519.4954.4241.420.195
Sn–10SB–0.5In58.7821.7361.2246.600.184
Sn–10SB–1.0In59.8922.3462.3847.780.182
Sn–10SB–1.5In62.6423.3765.2549.660.178
Sn–10SB–2In65.2224.3367.9351.710.175
Tab.2  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Fig.27  
Fig.28  
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed