Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2013, Vol. 7 Issue (1): 39-48   https://doi.org/10.1007/s11708-012-0229-3
  RESEARCH ARTICLE 本期目录
A unified power electronic controller for wind driven grid connected wound rotor induction generator using line commutated inverter
A unified power electronic controller for wind driven grid connected wound rotor induction generator using line commutated inverter
D. R. BINU BEN JOSE, N. AMMASAI GOUNDEN(email.png), Raavi SRI NAGA RAMESH
Department of Electrical and Electronics Engineering, National Institute of Technology, Tiruchirapalli 620015, India
 全文: PDF(233 KB)   HTML
Abstract

The implementation of a simple power converter for a wound rotor induction generator employing a three phase diode bridge rectifier and a line commutated inverter in the rotor circuit for super synchronous speeds has been proposed. The detailed working of the system in power smoothing mode and maximum power point tracking mode is presented. The current flow in the rotor circuit is controlled (by controlling the firing angle of the line commutated inverter) for controlling the stator power in both the modes. An 8 bit PIC microcontroller has been programmed to vary the firing angle of the line commutated inverter. Experiments have been carried out on a 3-phase, 3.73 kW, 400 V, 50 Hz, 4-pole, 1500 r/min wound rotor induction generator and the results obtained with the generator supplying power in both the modes are furnished. The complete scheme has been modeled using MATLAB/SIMULINK blocks and a simulation study has been conducted. The experimental waveforms are compared with the simulation results and a very close agreement between them is observed.

Key wordsline commutated inverter    MPPT    power smoothing    wound rotor induction generator
收稿日期: 2012-10-07      出版日期: 2013-03-05
Corresponding Author(s): GOUNDEN N. AMMASAI,Email:ammas@nitt.edu   
 引用本文:   
. A unified power electronic controller for wind driven grid connected wound rotor induction generator using line commutated inverter[J]. Frontiers in Energy, 2013, 7(1): 39-48.
D. R. BINU BEN JOSE, N. AMMASAI GOUNDEN, Raavi SRI NAGA RAMESH. A unified power electronic controller for wind driven grid connected wound rotor induction generator using line commutated inverter. Front Energ, 2013, 7(1): 39-48.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-012-0229-3
https://academic.hep.com.cn/fie/CN/Y2013/V7/I1/39
1 Salameh Z, Wang S. Microprocessor control of double output induction generator. Part I: inverter firing circuit. IEEE Power Engineering Review , 1989, 9(6): 41-42
doi: 10.1109/MPER.1989.4310750
2 Raina G, Malik O P. Wind power system using an adaptive sherbius induction machine. IEEE Transactions on Aerospace and Electronic Systems , 1986, 22(2): 204-210
doi: 10.1109/TAES.1986.310755
3 Uctug M Y, Eskandarzadeh I, Ince H. Modelling and output power optimisation of a wind turbine driven double output induction generator. IEE Proceedings of Electric Power Applications , 1994, 141(2): 33-38
doi: 10.1049/ip-epa:19949983
4 Cadirci I, Ermis M. Communication angle analysis of a double output induction generator operating in sub- and super-synchronous modes. In: Proceedings of the 7th Mediterranean Electrotechnical Conference . Antalya, Turkey, 1994, 793-796
5 Cadirei I, Ermis M. Performance evaluation of a wind driven DOIG using a hybrid model. IEEE Transactions on Energy Conversion , 1998, 13(2): 148-155
doi: 10.1109/60.678978
6 Cadirci I, Ermis M. Double-output induction generator operating at subsynchronous and supersynchronous speeds: steady-state performance optimisation and wind-energy recovery. IEE Proceedings. Electric Power Applications , 1992, 139(5): 429-442
doi: 10.1049/ip-b.1992.0053
7 Refoufi L, Al Zahawi B A T, Jack A G. Analysis and modeling of the steady state behavior of the static Kramer induction generator. IEEE Transactions on Power Systems , 1999, 14(3): 333-339
8 De Battista H, Puleston P F, Mantz R J, Christiansen C F. Sliding mode control of wind energy systems with DOIG-power efficiency and torsional dynamics optimization. IEEE Transactions on Power Systems , 2000, 15(2): 728-734
doi: 10.1109/59.867166
9 Datta R, Ranganathan V T. A method of tracking the peak power points for a variable speed wind energy conversion system. IEEE Transactions on Energy Conversion , 2003, 18(1): 163-168
doi: 10.1109/TEC.2002.808346
10 Yang T C. Initial study of using rechargeable batteries in wind power generation with variable speed induction generators. IET Renewable Power Generation , 2008, 2(2): 89-101
doi: 10.1049/iet-rpg:20070008
11 Cardenas R, Pena R, Asher G, Clare J. Power smoothing in wind generation systems using a sensorless vector controlled induction Machine driving a flywheel. IEEE Transactions on Energy Conversion , 2004, 19(1): 206-216
doi: 10.1109/TEC.2003.816605
12 Cardenas R, Pena R, Asher G M, Clare J, Blasco-Gimenez R. Control strategies for power smoothing using a flywheel driven by a sensorless vector-controlled induction machine operating in a wide speed range. IEEE Transactions on Industrial Electronics , 2004, 51(3): 603-614
doi: 10.1109/TIE.2004.825345
13 Takahashi R, Kinoshita H, Murata T, Tamura J, Sugimasa M, Komura A, Futami M, Ichinose M, Ide K. Output power smoothing and hydrogen production by using variable speed wind generators. IEEE Transactions on Industrial Electronics , 2010, 57(2): 485-493
doi: 10.1109/TIE.2009.2032437
14 Qu L Y, Qiao W. Constant power control of DFIG wind turbines with supercapacitor energy storage. IEEE Transactions on Industry Applications , 2011, 47(1): 359-367
doi: 10.1109/TIA.2010.2090932
15 Fadaeinedjad R, Moallem M, Moschopoulos G. Simulation of a wind turbine with doubly fed induction generator by FAST and Simulink. IEEE Transactions on Energy Conversion , 2008, 23(2): 690-700
doi: 10.1109/TEC.2007.914307
16 Papathanassiou S A, Papadopoulos M P. Mechanical stresses in fixed-speed wind turbines due to network disturbances. IEEE Transactions on Energy Conversion , 2001, 16(4): 361-367
doi: 10.1109/60.969476
17 Johnson C C, Smith R T. Dynamics of wind generators on electric utility networks. IEEE Transactions on Aerospace and Electronic Systems , 1976, 12(4): 483-493
doi: 10.1109/TAES.1976.308329
18 Beltran B, Ahmed-Ali T, El Hachemi Benbouzid M. Sliding mode power control of variable-speed wind energy conversion systems. IEEE Transactions on Energy Conversion , 2008, 23(2): 551-558
doi: 10.1109/TEC.2007.914163
19 Beltran B, Benbouzid M E H, Ahmed-Ali T. Second-order sliding mode control of a doubly fed induction generator driven wind turbine. IEEE Transactions on Energy Conversion , 2012, 27(2): 261-269
doi: 10.1109/TEC.2011.2181515
20 Wasynczuk O. Analysis of line-commutated converters during unbalanced operating conditions. IEEE Transactions on Energy Conversion , 1994, 9(2): 420-426
doi: 10.1109/60.300128
21 Ammasaigounden N, Subbiah M. Microprocessor-based voltage controller for wind-driven induction generators. IEEE Transactions on Industrial Electronics , 1990, 37(6): 531-537
doi: 10.1109/41.103458
22 Moon G W. Predictive current control of distribution static compensator for reactive power compensation. IEE Proceedings. Generation, Transmission and Distribution , 1999, 146(5): 515-520
doi: 10.1049/ip-gtd:19996598
23 Dixon J, Moran L, Rodriguez J, Domke R. Reactive power compensation technologies: state-of-the-art review. Proceedings of the IEEE , 2005, 93(12): 2144-2164
doi: 10.1109/JPROC.2005.859937
24 Bilgin H F, Ermis M, Kose K N, Cetin A, Cadirci I, Acik A, Demirci T, Terciyanli A, Kocak C, Yorukoglu M. Reactive-power compensation of coal mining excavators by using a new-generation STATCOM. IEEE Transactions on Industry Applications , 2007, 43(1): 97-110
doi: 10.1109/TIA.2006.887308
25 Mahanty R. Large value AC capacitor for harmonic filtering and reactive power compensation. IET Generation Transmission & Distribution , 2008, 2(6): 876-891
doi: 10.1049/iet-gtd:20080004
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed