Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2016, Vol. 10 Issue (4): 375-381   https://doi.org/10.1007/s11708-016-0426-6
  本期目录
Distribution and temporal variability of the solar resource at a site in south-east Norway
Muyiwa S. ADARAMOLA()
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås 1430, Norway
 全文: PDF(263 KB)   HTML
Abstract

Globally, solar energy is expected to play a significant role in the changing face of energy economies in the near future. However, the variability of this resource has been the main barrier for solar energy development in most locations around the world. This paper investigated the distribution and variability of solar radiation using the a 10-year (2006 to 2015) data collected at Sørås meteorological station located at latitude 59° 39′ N and longitude 10° 47′E, about 93.3 m above sea level (about 30 km from Oslo), in south-eastern part of Norway. It is found that on annual basis, the total number of days with a global solar radiation of less than 1 kWh/(m2·d) is 120 days while the total number of days with an expected global solar radiation greater than 3 kWh/(m2·d) is 156 days (42.74%) per year. The potential energy output from a horizontally placed solar collector in these 156 days is approximately 75% of the estimated annual energy output. In addition, it is found that the inter-annual coefficient of variation of the global solar radiation is 4.28%, while that of diffuse radiation is 4.96%.

Key wordscoefficient of variation    global solar radiation    diffuse ratio    albedo    PV energy systems
收稿日期: 2016-05-06      出版日期: 2016-11-17
Corresponding Author(s): Muyiwa S. ADARAMOLA   
 引用本文:   
. [J]. Frontiers in Energy, 2016, 10(4): 375-381.
Muyiwa S. ADARAMOLA. Distribution and temporal variability of the solar resource at a site in south-east Norway. Front. Energy, 2016, 10(4): 375-381.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-016-0426-6
https://academic.hep.com.cn/fie/CN/Y2016/V10/I4/375
GSR range Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
0–1 31 17 11 30 31
1–2 11 9 6 20
2–3 19 5 3 16
3–4 3 15 1 18 8
4–5 10 20 6 17 9
5–6 10 13 13 1
6–7 11 1
Tab.1  
GSR range/(kWh· (m2·d) –1) Number of days
Spring Summer Fall Winter Total
0–1 41 79 120
1–2 9 26 11 46
2–3 24 3 16 43
3–4 19 18 8 45
4–5 30 32 62
5–6 10 27 37
6–7 12 12
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 Average SD CoV/%
Global radiation 2.74 2.58 2.55 2.46 2.51 2.55 2.62 2.63 2.34 2.48 2.55 0.109 4.26
Diffuse radiation 1.13 1.17 1.21 1.22 1.23 1.22 1.24 1.22 1.06 1.13 1.18 0.059 4.98
Albedo 0.32 0.30 0.37 0.35 0.38 0.44 0.39 0.37 0.33 0.37 0.36 0.040 10.96
Tab.3  
1 Enova, Subsidies for electricity production (in Norwegian, ‘Tilskudd for el-produksjon’). 2016–01–18, http://www.enova.no/finansiering/privat/enovatilskuddet-/
2 Linked in. Oslo (Norway) extends solar rebate program, 2016–01–18
3 M A Omran. Analysis of solar radiation over Egypt. Theoretical and Applied Climatology, 2000, 67(3–4): 225–240
https://doi.org/10.1007/s007040070011
4 K Dahmani, R Dizene, G Notton, C Paoli, C Voyant, M L Nivet. Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model. Energy, 2014, 70(1): 374–381
https://doi.org/10.1016/j.energy.2014.04.011
5 C A Gueymard, S M Wilcox. Assessment of spatial and temporal variability in the US solar resource from radiometric measurements and predictions from models using ground-based or satellite data. Solar Energy, 2011, 85(5): 1068–1084
https://doi.org/10.1016/j.solener.2011.02.030
6 S M Wilcoz, C A Gueymard. Spatial and temporal variability of the solar resource in the United States. American Solar Energy Society–Proc. ASES Annual Conference, Phoenix, 2010
7 J L De Souza, R M Nicacio, M A L Moura. Global solar radiation measurements in Maceio, Brazil. Renewable Energy, 2005, 30(8): 1203–1220
https://doi.org/10.1016/j.renene.2004.09.013
8 T Tomson, G Tamm. Short-term variability of solar radiation. Solar Energy, 2006, 80(5): 600–606
https://doi.org/10.1016/j.solener.2005.03.009
9 J M Santabàrbara , J Calbo , J M Baldasano , J Esteve, A Mitjà . Month-to-month variation of global solar radiation in Catalonia (Spain). International Journal of Climatology, 1996, 16(6): 711–721
https://doi.org/10.1002/(SICI)1097-0088(199606)16:6<711::AID-JOC42>3.0.CO;2-M
10 Y L Zhang, B Q Qin, W M Chen. Analysis of 40 year records of solar radiation data in Shanghai, Nanjing and Hangzhou in Eastern China. Theoretical and Applied Climatology, 2004, 78(4): 217–227
https://doi.org/10.1007/s00704-003-0030-7
11 Q Hernández-Escobedo, E Rodríguez-García, R Saldaña-Flores, A Fernández-García, F Manzano-Agugliaro. Solar energy resource assessment in Mexican states along the Gulf of Mexico. Renewable & Sustainable Energy Reviews, 2015, 43: 216–238
https://doi.org/10.1016/j.rser.2014.10.025
12 K Parding, J A Olseth, K F Dagestad, B G Liepert. Decadal variability of clouds, solar radiation and temperature at a high-latitude coastal site in Norway. Tellus B-chemical & Physical Meteorology, 2014, 66(1): 25897
13 A A Grimenes, V Thue-Hansen. The reduction of global radiation in south-eastern Norway during the last 50 years. Theoretical and Applied Climatology, 2006, 85(1): 37–40
https://doi.org/10.1007/s00704-005-0176-6
14 V Gil, M A Gaertner, E Sanchez, C Gallardo, E Hagel, C Tejeda, M de Castro. Analysis of interannual variability of sunshine hours and precipitation over Peninsular Spain. Renewable Energy, 2015, 83(680): 680–689
https://doi.org/10.1016/j.renene.2015.05.001
15 K Mertens. Photovoltaics: Fundamentals, Technology and Practice. John Wiley and Sons, Inc. 2014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed