Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (2): 411-416   https://doi.org/10.1007/s11708-017-0447-9
  本期目录
多联式空调系统中油气分离器的试验研究
辛电波(), 黄曙良, 银松, 邓玉平, 张文强
青岛海信日立空调系统有限公司,青岛 266071,中国
Experimental investigation on oil-gas separator of air-conditioning systems
Dianbo XIN(), Shuliang HUANG, Song YIN, Yuping DENG, Wenqiang ZHANG
Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. Qingdao 266071, China
 全文: PDF(404 KB)   HTML
摘要:

回油系统在多联式空调(变冷媒流量系统)中起到重要作用,其能保证多联式空调的可靠运行。而油气分离器是回油系统中的关键部件,油气分离器的分离效率直接影响多联式系统的性能。因此本文搭建了可以测量压缩机吐油率和油气分离器效率的实验装置。因为制冷剂中声速的大小随润滑油含量的不同而变化,所以本文通过在线声速仪测量实时测量系统内的含油率,通过比较油气分离器前后的含油率,获取了油气分离器的效率。

Abstract

The oil-return system plays an important role in the variable refrigerant flow (VRF) systems because it ensures the reliable operation of the VRF systems. The oil-gas separator is the most essential component of the oil-return system, and the separation efficiency of the separator directly influences the performance of the VRF systems. Therefore, in this paper, a test rig was built to measure the oil discharge ratio of the compressor and the separation efficiency of the oil-gas separator. A sound velocity transducer was used to measure the oil mass concentration instantaneously, because the sound velocity was changed with the mass ratio of oil to refrigerant. The separation efficiency of the separator could be obtained by comparing the mass fraction of oil to refrigerant before and after the separator was connected to the system.

Key wordsvariable refrigerant flow system    oil-gas separator    separation efficiency
收稿日期: 2016-05-06      出版日期: 2019-07-04
通讯作者: 辛电波     E-mail: xindianbo@hisensehitachi.com
Corresponding Author(s): Dianbo XIN   
 引用本文:   
辛电波, 黄曙良, 银松, 邓玉平, 张文强. 多联式空调系统中油气分离器的试验研究[J]. Frontiers in Energy, 2019, 13(2): 411-416.
Dianbo XIN, Shuliang HUANG, Song YIN, Yuping DENG, Wenqiang ZHANG. Experimental investigation on oil-gas separator of air-conditioning systems. Front. Energy, 2019, 13(2): 411-416.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0447-9
https://academic.hep.com.cn/fie/CN/Y2019/V13/I2/411
Fig.1  
SensorControl rangeAccuracyMeasurement location
Pressure transducer0.1–1.2 MPa±0.15%Suction pipe of compressor
Pressure transducer1.0–4.5 MPa±0.15%Discharge pipe of compressor
Temperature transducer15°C–40°C±0.1°CSuction pipe of compressor
Temperature transducer30°C–60°C±0.1°CBefore the expansion valve
Temperature transducer25°C–45°C±0.2°CEnvironment of the compressor
Sound velocimeter200–1600 m/s±0.01 m/sAfter the sub-cooler
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 WangC C, HafnerA, KuoC S, HsiehW D. Influence of lubricant on the nucleate boiling heat transfer performance of refrigerant-a review. Heat Transfer Engineering, 2014, 35(6): 651–663
2 F Ren, G Ding, X C Huang, Y Zhu. Heat transfer characteristics of R410A-Oil mixture flow condensation in a 5 mm horizontal enhanced tube. Journal of Shanghai Jiao Tong University, 2009, 43(9): 1437–1440
3 D Han, K J Lee. Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes. International Journal of Heat and Mass Transfer, 2005, 48(18): 3804–3816
https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.041
4 B Shen, E A Groll. Review article: a critical review of the influence of lubricants on the heat transfer and pressure drop of refrigerant-part II: lubricant influence on condensation and pressure drop. HVAC & R Research, 2005, 11(4): 511–526
https://doi.org/10.1080/10789669.2005.10391152
5 Z Wu, W Wu. Study on the low-resistance and high-efficiency pre-heater cyclone by orthogonal design. Silicate Journal, 1988, 16(4): 296–303
6 A Raoufi, M Shams, M Farzaneh. EbrahimiR. Numerical simulation and optimization of fluid flow in cyclone vortex finder. Chemical Engineering and Processing, 2008, 47(1): 128–137
7 G Jiang. Application of CFD technique in design and selection of oil and gas separator. Chemical Industry Equipment and Pipe, 2010, 47(4): 13–17
8 G Yan, L Peng, S Wu. A study on an online measurement method to determine the oil discharge ratio by utilizing Coriolis mass flow meter in a calorimeter. International Journal of Refrigeration, 2015, 52: 42–50
https://doi.org/10.1016/j.ijrefrig.2014.11.017
9 M Fukuta, M Ito, T Yanagisawa. OgiY. Refrigerant concentration measurement at compressor oil sump by refractive index (concentration of R410A in PVE oil). International Journal of Refrigeration, 2010, 33(2): 390–397
10 Y Hwang, R Radermacher, T Hirata. Oil mass fraction measurement of CO2/PAG mixture. International Journal of Refrigeration, 2008, 31(2): 256–261
https://doi.org/10.1016/j.ijrefrig.2007.05.011
11 J M Lebreton, L Vuillame. Oil concentration measurement in saturated liquid refrigerant flowing inside a refrigeration machine. International Journal of Applied Thermodynamic, 2001, 4(1): 53–60
12 J J Baustian, M B Pate, A E Bergles. Measuring the concentration of a flowing oil-refrigerant mixture with a bypass viscometer. ASHRAE Transactions, 1988, 94(2): 588–601
13 J Hong, Y S Chang, D Kim. Development of a micro thermal sensor for real-time monitoring of lubricating oil concentration. International Journal of Refrigeration, 2011, 34(1): 374–382
https://doi.org/10.1016/j.ijrefrig.2010.07.009
14 E Navarro, J F Urchueguia, J Gonzalvez, J M Corberán. Test results of performance and oil circulation rate of commercial reciprocating compressors of different capacities working with propane (R290) as refrigerant. International Journal of Refrigeration, 2005, 28(6): 881–888
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed