Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (1): 114-126   https://doi.org/10.1007/s11708-017-0483-5
  本期目录
水平金属丝网管表面上升液膜流动的浮力和热毛细混合流动的试验研究
GOMES(马努尔.戈梅斯) Manuel J., MEI Ning()
中国海洋大学工程学院
Experimental study on combined buoyant-thermocapillary flow along with rising liquid film on the surface of a horizontal metallic mesh tube
Manuel J. GOMES, Ning MEI()
Marine Engineering Section, College of Engineering, Ocean University of China, Qingdao 266100, China
 全文: PDF(7507 KB)   HTML
摘要:

本文探讨在液体容器内部温度分布和随时间变化时的水平金属丝网管表面上升液膜浮力与热毛细混合流动现象。这种由浮力和热毛细共同作用引起的流动现象发生于水平 金属丝网管表面的液膜上升时。实验中对三个不同的金属丝网管浸入深度进行了测试。实验进行时长为60分钟,实验中用到一个长110毫米、直径为25毫米的加热金属管,金属管表面用178微米×178微米的金属网进行覆盖,液体为蒸馏水。实验结果显示了两种不 同的流型。利用热电偶和红外热像仪来测量温度。液体的自由表面相对于管下边缘的距离 测量以角θ来表示。结果表明,较小的 θ 角,或浸入深度较小时,流动几乎全部是由于 浮升力与液体上升流动引起的混合流动。 在这种情况下,只有靠近管附近的液体被加热, 实验中远离流动区域的液体温度变化很小,系统接近于稳定状态。对于较大的 θ 角或浸 入深度较大时,液体自由表面呈现一种不同的流型,这种流型被定义为热毛细流动 (Marangoni对流)。与此同时,上升的液膜也是存在的。 较大的进入深度导致液体自由表面区域存在较高的温度梯度,并且促进热分层现象;因此系统不能接近稳定条件。

Abstract

Temperature distribution and variation with time has been considered in the analysis of the influences of the initial level of immersion of a horizontal metallic mesh tube in the liquid on combined buoyant and thermo-capillary flow. The combined flow occurs along with the rising liquid film flow on the surface of a horizontal metallic mesh tube. Three different levels of immersion of the metallic mesh tube in the liquid have been tested. Experiments of 60 min in duration have been performed using a heating metallic tube with a diameter of 25 mm and a length of 110 mm, sealed outside with a metallic mesh of 178 mm by 178 mm, and distilled water. These reveal two distinct flow patterns. Thermocouples and infrared thermal imager are utilized to measure the temperature. The level of the liquid free surface relative to the lower edge of the tube is measured as angle q. The results show that for a smaller q angle, or a low level of immersion, with a relatively low heating power, it is possible to near fully combine the upwards buoyant flow with the rising liquid film flow. In this case, the liquid is heated only in the vicinity of the tube, while the liquid away from the flow region experiences small changes in temperature and the system approaches steady conditions. For larger q angles, or higher levels of immersion, a different flow pattern is noticed on the liquid free surface and identified as the thermo-capillary (Marangoni) flow. The rising liquid film is also present. The higher levels of immersion cause a high temperature gradient in the liquid free surface region and promote thermal stratification; therefore the system could not approach steady conditions.

Key wordsrising liquid film    combined flow    thermo-capillary flow    buoyant flow    metallic mesh tube    horizontal tube
收稿日期: 2016-07-29      出版日期: 2020-03-16
通讯作者: MEI Ning     E-mail: nmei@ouc.edu.cn
Corresponding Author(s): Ning MEI   
 引用本文:   
GOMES(马努尔.戈梅斯) Manuel J., MEI Ning. 水平金属丝网管表面上升液膜流动的浮力和热毛细混合流动的试验研究[J]. Frontiers in Energy, 2020, 14(1): 114-126.
Manuel J. GOMES, Ning MEI. Experimental study on combined buoyant-thermocapillary flow along with rising liquid film on the surface of a horizontal metallic mesh tube. Front. Energy, 2020, 14(1): 114-126.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0483-5
https://academic.hep.com.cn/fie/CN/Y2020/V14/I1/114
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Thermocouples Horizontal distance/mm Vertical distance/mm
T6 0 6
T7 0 75
T8 30 35
T9 80 35
T10 130 35
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
θ Level of the liquid free surface relative to the lower edge of the tube
ϵ Emissivity of water
DT Temperature difference/°C
q Heat flux density on the surface of the smooth metallic tube/(W·m–2)
U Power source voltage/V
R Resistance of the metallic tube/W
D Diameter of the smooth metallic tube/m
L Length of the metallic tube/m
T Thermocouple
CTD Circumferential temperature distribution/°C
  
1 N Mei, M Z He, J Zhao, H Y Yu. Study of rising liquid film on surface of horizontal metallic mesh tube. Heat Transfer—Asian Research, 2009, 38(8): 557–568
2 N Mei, Y Li, G Wang, Y Bai, X Liu. Rising liquid film induced by rewetting and heat transfer on the surface of a fluted helix horizontal tube. Journal of Enhanced Heat Transfer, 2012, 19(2): 107–121
https://doi.org/10.1615/JEnhHeatTransf.2012002706
3 N Mei, J Zhao, Y C Xu. Fluted helix channel heat transfer along a vertical tube. Journal of Enhanced Heat Transfer, 2010, 17(4): 313–329
https://doi.org/10.1615/JEnhHeatTransf.v17.i4.30
4 Y Li, S S Liu, J Luan, Q L Wang. The desalination device using the rising liquid film on the microscale fluted surface of horizontal tubes. Advanced Materials Research, 2014, 901: 59–63
https://doi.org/10.4028/www.scientific.net/AMR.901.59
5 H Y Yu, N Mei, X B Liu, M Z He, H Y Si. Non-linear behavior analysis of the rising liquid film on the fluted surface of a horizontal tube. Journal of Engineering Thermophysics, 2008, 29(6): 1048–1050
6 S B G O’Brien, L W Schwartz. Theory and modeling of thin film flows. 2002,
7 Q Kang, L Duan, W R Hu. Experimental study of surface deformation and flow pattern on buoyant-thermocapillary convection. Microgravity Science and Technology, 2004, 15(2): 18–24
https://doi.org/10.1007/BF02870955
8 M F Schatz, G P Neitzel. Experiments on thermocapillary instabilities. Fluid Mechanics, 2001, 33(1): 93–127
https://doi.org/10.1146/annurev.fluid.33.1.93
9 K J Lee, Y Kamotani, S Yoda. Combined thermocapillary and natural convection in rectangular containers with localized heating. International Journal of Heat and Mass Transfer, 2002, 45(23): 4621–4630
https://doi.org/10.1016/S0017-9310(02)00163-1
10 R Wang, Kahawita. Oscillatory behaviour in buoyant thermocapillary convection of fluid layers with a free surface. International Journal of Heat and Mass Transfer, 1998, 41(2): 399–409
https://doi.org/10.1016/S0017-9310(97)00124-5
11 H B Hadid, B Roux. Buoyancy- and thermocapillary-driven flows in a shallow open cavity: unsteady flow regimes. Journal of Crystal Growth, 1989, 97(1): 217–225
https://doi.org/10.1016/0022-0248(89)90263-7
12 J Q Mundrane, A Xu, Zebib. Thermocapillary convection in a rectangular cavity with a deformable interface. Advances in Space Research, 1995, 16(7): 41–53
https://doi.org/10.1016/0273-1177(95)00132-X
13 H Saleh, I Hashim. Buoyant Marangoni convection of nanofluids in square cavity. Applied Mathematics and Mechanics-english Edition, 2015, 36(9): 1169–1184
https://doi.org/10.1007/s10483-015-1973-6
14 T Qin, Z E Tuković, R O Grigoriev. Buoyancy-thermocapillary convection of volatile fluids under atmospheric conditions. International Journal of Heat and Mass Transfer, 2014, 75(4): 284–301
https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.027
15 H K Dhavaleswarapu, P Chamarthy, S V Garimella, J Y Murthy. Experimental investigation of steady buoyant-thermocapillary convection near an evaporating meniscus. Physics of Fluids (1994–present), 2007, 19(8): 1064–1070
16 P R Dominiczak, J T Cieśliński. Circumferential temperature distribution during nucleate pool boiling outside smooth and modified horizontal tubes. Experimental Thermal and Fluid Science, 2008, 33(1): 173–177
https://doi.org/10.1016/j.expthermflusci.2008.07.007
17 V D Chaika. Vapor-bubble growth at the lower generatrix of horizontal tubes. Journal of Engineering Physics and Thermophysics, 1987, 52(1): 52–57
https://doi.org/10.1007/BF00870202
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed