Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2017, Vol. 11 Issue (3): 326-333   https://doi.org/10.1007/s11708-017-0489-z
  本期目录
Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell
Tian TIAN, Jianjun TANG, Wei GUO(), Mu PAN()
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Hubei Provincical Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070, China
 全文: PDF(395 KB)   HTML
Abstract

In this paper, a novel accelerated test method was proposed to analyze the durability of MEA, considering the actual operation of the fuel cell vehicle. The proposed method includes 7 working conditions: open circuit voltage (OCV), idling, rated output, overload, idling-rated cycle, idling-overload cycle, and OCV-idling cycle. The experimental results indicate that the proposed method can effectively destroy the MEA in a short time (165 h). Moreover, the degradation mechanism of MEA was analyzed by measuring the polarization curve, CV, SEM and TEM. This paper may provide a new research direction for improving the durability of fuel cell.

Key wordspolymer electrolyte membrane fuel cell    accelerated life-time test    load cycling test    durability
收稿日期: 2017-03-13      出版日期: 2017-09-07
Corresponding Author(s): Wei GUO,Mu PAN   
 引用本文:   
. [J]. Frontiers in Energy, 2017, 11(3): 326-333.
Tian TIAN, Jianjun TANG, Wei GUO, Mu PAN. Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell. Front. Energy, 2017, 11(3): 326-333.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-017-0489-z
https://academic.hep.com.cn/fie/CN/Y2017/V11/I3/326
Fig.1  
Operation
conditions
Voltage/V Humidity (RH)/% Time/min
OCV OCV 30 10
Idling 0.8 30 30
Rated output 0.6 70 50
Overload 0.5 70 10
Idling-rated cycle 0.6–0.8 70 160
(40 times cycle, 2 min idling, 2 min rated)
Idling-overload 0.8–0.5 70 20
(5 times cycle, 2 min idling, 2 min overload)
OCV-idling OCV–0.8 30 40
(10 times cycle, 2 min OCV, 2 min idling)
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Elements Elemental composition/%
Before vehicle accelerated test After vehicle accelerated test
Anode Cathode
C 46.61 41.09 42.50
O 6.28 6.18 6.23
F 44.71 50.44 49.16
S 1.10 1.23 1.17
Pt 1.30 1.06 0.95
Tab.2  
1 Steele B C, Heinzel  A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352
https://doi.org/10.1038/35104620
2 Winter M, Brodd  R J. What are batteries, fuel cells, and supercapacitors? ChemInform, 2004, 104(10): 4245
3 Borup R, Meyers  J, Pivovar B ,  Kim Y S ,  Mukundan R ,  Garland N ,  Myers D ,  Wilson M ,  Garzon F ,  Wood D, Zelenay  P, More K ,  Stroh K ,  Zawodzinski T ,  Boncella J ,  McGrath J E ,  Inaba M ,  Miyatake K ,  Hori M, Ota  K, Ogumi Z ,  Miyata S ,  Nishikata A ,  Siroma Z ,  Uchimoto Y ,  Yasuda K ,  Kimijima K ,  Iwashita N . Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951
https://doi.org/10.1021/cr050182l
4 Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51
https://doi.org/10.1038/nature11115
5 Wu J, Yuan  X Z, Martin  J J, Wang  H, Zhang J ,  Shen J, Wu  S, Merida W . A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. Journal of Power Sources, 2008, 184(1): 104–119
https://doi.org/10.1016/j.jpowsour.2008.06.006
6 Bar-On I, Kirchain  R, Roth R . Technical cost analysis for PEM fuel cells. Journal of Power Sources, 2002, 109(1): 71–75
https://doi.org/10.1016/S0378-7753(02)00062-9
7 Arlt T, Manke  I, Wippermann K ,  Riesemeier H ,  Mergel J ,  Banhart J . Investigation of the local catalyst distribution in an aged direct methanol fuel cell MEA by means of differential synchrotron X-ray absorption edge imaging with high energy resolution. Journal of Power Sources, 2013, 221(1): 210–216
https://doi.org/10.1016/j.jpowsour.2012.08.038
8 Liu W, Ruth  K, Rusch G . Membrane durability in PEM fuel cells. Journal of New Materials for Electrochemical Systems, 2001, 4(4): 227–232
9 Galbiati S, Baricci  A, Casalegno A ,  Marchesi R . Degradation in phosphoric acid doped polymer fuel cells: a 6000 h parametric investigation. International Journal of Hydrogen Energy,  2013,  38(15): 6469–6480
10 Bao J, Krishnan  G N, Jayaweera  P, Perez-Mariano J ,  Sanjurjo A . Effect of various coal contaminants on the performance of solid oxide fuel cells: Part I. Accelerated testing. Journal of Power Sources, 2009, 193(2): 607–616
https://doi.org/10.1016/j.jpowsour.2009.04.034
11 Zhang S, Yuan  X, Wang H ,  Merida W ,  Zhu H, Shen  J, Wu S ,  Zhang J . A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy,  2009,  34(1): 388–404
12 Panha K, Fowler  M, Yuan X Z ,  Wang H. Accelerated durability testing via reactants relative humidity cycling on PEM fuel cells. Applied Energy,  2012,  93(5): 90–97
13 Aindow T T, O’Neill  J. Use of mechanical tests to predict durability of polymer fuel cell membranes under humidity cycling. Journal of Power Sources,   2011,  196(8): 3851–3854
14 Kundu S, Fowler  M, Simon L C ,  Abouatallah R . Reversible and irreversible degradation in fuel cells during open circuit voltage durability testing. Journal of Power Sources,  2008,  182(1): 254–258
15 Rong F, Huang  C, Liu Z S ,  Song D, Wang  Q. Microstructure changes in the catalyst layers of PEM fuel cells induced by load cycling: part II. simulation and understanding. Journal of Power Sources,  2008,  175(2): 712–723
16 Avakov V B, Aliev  A D, Beketaeva  L A, Bogdanovskaya  V A, Burkovskii  E V, Datskevich  A A, Ivanitskii  B A, Kazanskii  L P, Kapustin  A V, Korchagin  O V, Kuzov  A V, Landgraf  I K, Lozovaya  O V, Modestov  A D, Stankevich  M M, Tarasevich  M R, Chalykh  A E. Study of degradation of membrane-electrode assemblies of hydrogen-oxygen (air) fuel cell under the conditions of life tests and voltage cycling. Russian Journal of Electrochemistry, 2014,  50(8): 773–788
17 Solasi R, Zou  Y, Huang X ,  Reifsnider K ,  Condit D . On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles. Journal of Power Sources, 2007, 167(2): 366–377
https://doi.org/10.1016/j.jpowsour.2007.02.025
18 Oszcipok M, Riemann  D, Kronenwett U ,  Kreideweis M ,  Zedda A . Statistic analysis of operational influences on the cold start behaviour of PEM fuel cells. Journal of Power Sources, 2005, 145(2): 407–415
https://doi.org/10.1016/j.jpowsour.2005.02.058
19 Nishikawa H, Sasou  H, Kurihara R ,  Nakamura S ,  Kano A, Tanaka  K, Aoki T ,  Ogami Y . High fuel utilization operation of pure hydrogen fuel cells. International Journal of Hydrogen Energy, 2008, 33(21): 6262–6269
https://doi.org/10.1016/j.ijhydene.2008.07.019
20 Ettingshausen F, Kleemann  J, Marcu A ,  Toth G, Fuess  H, Roth C . Dissolution and migration of platinum in PEMFCs investigated for start/stop cycling and high potential degradation. Fuel Cells (Weinheim), 2011, 11(2): 238–245
https://doi.org/10.1002/fuce.201000051
21 Manasilp A, Gulari  E. Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Applied Catalysis B: Environmental, 2002, 37(1): 17–25
https://doi.org/10.1016/S0926-3373(01)00319-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed