Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (4): 731-741   https://doi.org/10.1007/s11708-018-0528-4
  研究论文 本期目录
文莱达鲁萨兰国风能潜力调研
SALAM M. A.1(), YAZDANI M. G.1, RAHMAN Q. M.2, NURUL Dk1, MEI S. F.1, HASAN Syeed2
1. 文莱理工大学工程学院
2. 加拿大西安大略大学电气与计算机工程系
Investigation of wind energy potentials in Brunei Darussalam
M. A. SALAM1(), M. G. YAZDANI1, Q. M. RAHMAN2, Dk NURUL1, S. F. MEI1, Syeed HASAN2
1. Faculty of Engineering, Universiti Teknologi Brunei, BE1410, Brunei Darussalam
2. Electrical and Computer Engineering, University of Western Ontario, London N6A 3K7, Canada
 全文: PDF(1550 KB)   HTML
摘要:

文莱达鲁萨兰国传统的发电多依赖于天然气和石油,目前电力公司开始考虑采用风力发电。本文研究了最容易获取的可再生能源---风能。通过测量文莱达鲁萨兰国两个不同地方的风速,利用风力发电软件Wind Power建立了风速威布尔分布模型,并据此研究了风速、风向、风场特性等。通过风向玫瑰图分析了陆上和离岸的风能密度。基于这一分析,作者发现3-5米/秒的风速出现几率为40%。此外,研究表明,在5米/秒风速条件下,文莱达鲁萨兰国这两个地方的年发电量约为1000-1500千瓦时。

Abstract

Conventional power generation mainly depends on natural gas and diesel oil in Brunei Darussalam. The power utility company is now thinking of power generation using natural wind. In this paper, wind energy, being one of the most readily available renewable energy sources, was studied. The wind characteristic, velocity and directions were studied using Weibull distribution based on the measurement of wind speed at two different locations in Brunei Darussalam. These wind speed distributions were modeled using the Wind Power program. The wind rose graph was obtained for the wind direction to analyze the wind power density onshore and offshore. Based on this analysis, it has been found that the wind speed of 3 to 5 m/s has a probability of occurrence of 40%. Besides, the annual energy production at a wind speed of 5 m/s has been found to be in the range between 1000 and 1500 kWh for both the locations in Brunei Darussalam.

Key wordswind speed    Weibull distribution    wind rose    wind energy    wind power
收稿日期: 2017-05-12      出版日期: 2019-12-26
通讯作者: SALAM M. A.     E-mail: abdus.salam@utb.edu.bn
Corresponding Author(s): M. A. SALAM   
 引用本文:   
SALAM M. A., YAZDANI M. G., RAHMAN Q. M., NURUL Dk, MEI S. F., HASAN Syeed. 文莱达鲁萨兰国风能潜力调研[J]. Frontiers in Energy, 2019, 13(4): 731-741.
M. A. SALAM, M. G. YAZDANI, Q. M. RAHMAN, Dk NURUL, S. F. MEI, Syeed HASAN. Investigation of wind energy potentials in Brunei Darussalam. Front. Energy, 2019, 13(4): 731-741.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-018-0528-4
https://academic.hep.com.cn/fie/CN/Y2019/V13/I4/731
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Year/
Hours
Mean wind speed/(m?s−1)
2012 2013 2014
01 1.66 1.72 1.71
02 1.67 1.76 1.59
03 1.61 1.68 1.65
04 1.62 1.70 1.64
05 1.63 1.74 1.69
06 1.65 1.79 1.67
07 1.58 1.84 1.69
08 1.91 2.22 1.89
09 2.37 2.55 2.34
10 2.68 2.78 2.55
11 2.84 3.02 2.86
12 3.33 3.42 3.23
13 3.78 3.90 3.75
14 4.15 4.12 4.03
15 4.38 4.21 4.31
16 4.33 4.13 4.30
17 3.92 3.65 3.75
18 3.18 2.91 3.02
19 2.54 2.32 2.38
20 2.19 2.11 2.13
21 2.04 1.94 1.99
22 1.96 1.91 1.93
23 1.81 1.85 1.83
24 1.74 1.81 1.71
Tab.1  
Time Wind direction/(°) Wind speed/(m?s–1) Time Wind direction/(°) Wind speed/(m?s−1)
15:10 36 3.17 16:40 358 5.2
15:15 38 2.87 16:45 357 4.91
15:20 36 2.96 16:50 355 4.86
15:25 37 3.34 16:55 353 5.43
15:30 36 3.38 17:00 358 4.76
15:35 39 3.25 17:05 358 5.06
15:40 37 2.68 17:10 351 5.16
15:45 32 3.06 17:15 346 4.78
15:50 33 3.1 17:20 351 5.12
15:55 36 3.44 17:25 353 4.91
16:00 41 4.63 17:30 352 5.23
16:05 16 3.89 17:35 357 4.44
16:10 17 4.55 17:40 349 4.46
16:15 20 4.5 17:45 348 5.08
16:20 22 5.12 17:50 345 5.1
16:25 358 4.42 17:55 349 4.76
16:30 350 5.01 16:00 349 4.32
16:35 356 4.67
Tab.2  
Time Wind direction/(°) Wind speed/(m?s−1) Time Wind direction/(°) Wind speed/(m?s–1)
10:20 54 2.81 12:55 29.4 3.02
10:25 54 2.28 13:00 29.4 2.98
10:30 54 2.55 13:05 30.3 3.19
10:35 54 2.7 13:10 30.3 2.76
10:40 54 2.68 13:15 29.5 2.65
18:43 54 2.55 13:20 30.3 2.81
10:50 54 2.83 13:25 30.3 2.95
10:55 54 2.78 13:30 30.3 3.29
11:00 54 2.49 13:35 30.3 2.91
11:05 44 2.72 13:40 26 2.68
11:10 44 2.4 13:45 38 3.1
11:15 44 2.93 13:50 38 2.95
11:20 44 2.66 13:55 342 3.19
11:25 44 2.83 14:00 342 3.1
11:30 44 2.72 14:05 342 3.25
11:35 44 2.3 14:10 342 3.23
11:40 44 2.62 14:15 342 3.32
11:45 44 2.95 14:20 342 3.19
11:50 44 2.7 14:25 342 3.06
11:55 44 2.53 14:30 342 3.46
12:00 44 2.57 14:35 342 3.57
12:05 44 2.43 14:40 336 3.17
12:10 44 2.66 14:45 336 3.32
12:15 44 2.36 14:50 342 3.25
12:30 44 2.89 14:55 342 2.76
12:35 44 2.81 15:00 342 3.12
12:40 30.3 2.95 15:05 342 3.9
12:45 30.3 2.62 15:10 342 3.49
12:50 30.3 2.85
Tab.3  
Time Wind direction/(°) Wind speed/(m?s−1) Time Wind direction/(°) Wind speed/(m?s–1)
11:50 42 2.19 14:05 22 2.43
11:55 42 1.75 14:10 22 2.41
12:00 48 2.78 14:15 22 2.36
12:05 48 2.5 14:20 15 1.89
12:10 48 2.17 14:25 15 1.87
12:15 24 1.98 14:30 38 3.04
12:20 24 1.78 14:35 38 2.72
12:25 24 1.5 14:40 24 2.6
12:30 25 2.34 14:45 24 2.58
12:35 25 1.85 14:50 24 2.5
12:40 26 3.54 14:55 24 2.43
12:45 26 3.21 15:00 24 2.43
12:50 26 2.75 15:05 24 2.37
12:55 29 3.7 15:10 19 2.41
13:00 29 3.45 15:15 18 1.95
13:05 52 3.24 15:20 18 1.67
13:10 55 3.45 15:25 16 1.64
13:15 29 3.07 15:30 52 3.26
13:20 41 1.56 15:35 52 3.12
13:25 46 2.63 15:40 47 2.46
13:30 46 2.54 15:45 47 2.46
13:35 46 2.54 15:50 40 2.38
13:40 17 2.84 15:55 42 2.51
13:45 17 1.95 16:00 12 2.84
13:50 11 2.67 16:05 43 3.04
13:55 11 2.45 16:10 37 3.46
14:00 22 2.72 16:15 39 3.72
Tab.4  
Time Wind direction/(°) Wind speed/(m?s−1) Time Wind direction/(°) Wind speed/(m?s–1)
4:20 41 3.75 6:15 46 3.27
4:25 41 4.39 6:20 46 4.23
4:30 41 5.01 6:25 46 4.88
4:35 41 4.67 6:30 59 2.42
4:40 51 3.87 6:35 59 2.78
4:45 51 4.27 6:40 56 3.46
4:50 51 3.86 6:45 56 2.89
4:55 55 3.45 6:50 55 3.78
5:00 56 3.74 6:55 55 4.67
5:05 55 3.7 7:00 51 3.78
5:10 55 3.76 7:05 48 3.67
5:15 55 3.46 7:10 48 3.46
5:20 65 4.11 7:15 48 3.07
5:25 65 3.78 7:20 48 3.47
5:30 41 4.75 7:25 65 2.75
5:35 59 3.75 7:30 55 3.79
5:40 59 2.68 7:35 41 4.18
5:45 59 2.87 7:40 46 5.23
5:50 65 2.46 7:45 32 4.65
5:55 65 2.97 7:50 32 5.01
6:00 41 4.32 7:55 41 4.21
6:05 32 4.76 8:00 41 5.37
6:10 46 4.67 8:05 41 4.32
Tab.5  
Wind class/(m?s−1) Frequency distribution/%
2012 2013 2014
Calms 0.1 0.1 0.2
0.5–2.1 41.2 40.2 41.2
2.1–3.6 32.3 33.3 33.7
3.6–5.7 22.1 21.9 21.7
5.7–8.8 4.3 4.3 3.2
8.8–11 0 0.1 0.1
≥11 0 0 0
Tab.6  
Months v¯ k c
2012 2013 2014 2012 2013 2014 2012 2013 2014
January 2.77 2.86 2.51 3.45 3.70 4.33 3.08 3.18 2.76
February 2.51 3.07 2.71 2.85 2.94 2.85 2.82 3.45 3.04
March 2.65 2.59 2.89 2.56 2.77 2.85 2.98 2.91 3.25
April 2.40 2.50 2.39 2.77 2.94 2.77 2.70 2.81 2.69
May 2.29 2.30 2.40 2.56 3.03 2.43 2.57 2.58 2.70
June 2.55 2.27 2.25 2.37 3.63 2.49 2.87 2.55 2.53
July 2.50 2.56 2.28 2.56 2.94 2.56 2.81 2.88 2.56
August 2.56 2.40 2.41 2.37 2.70 2.43 2.88 2.70 2.71
September 2.41 2.56 2.45 2.70 2.49 2.77 2.71 2.88 2.75
October 2.47 2.55 2.50 2.70 2.63 2.85 2.78 2.87 2.81
November 2.48 2.42 2.53 2.94 3.12 2.94 2.79 2.72 2.84
December 2.68 2.48 2.68 3.03 3.03 2.77 3.01 2.79 3.01
Tab.7  
Wind turbines Wind Energy Solution Tulipo SampreyWren Ampair 600-230 Earth-Tech ET500 Turby Urban Green Energy Eddy Windspire
HAWT/VAWT HAWT HAWT HAWT HAWT VAWT VAWT VAWT
No. of blades 3 3 3 3 3 3 3
Rotor diameter/m 5 1 1.7 2.5 2.6 1.8 3.1
Swept area/m2 19.6 0.8 2.3 4.9 5.3 2.5 7.5
Power rating/kW 2.5 0.3 0.7 0.5 2.5 0.6 1.2
Cut-in wind speed/(m?s−1) 2.5 3 3 2.5 3.5 3.5 4
Cut-off wind speed/(m?s−1) 20 25 30 25 14 25 14
Tab.8  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
v Unsteady wind speed component
v Mean value of v
σ Standard deviation of wind speed
k A factor that determines the shape of the curve
c Scale parameter with unit of speed/(m?s−1)
ρ The density of air, 1.225 kg/m3
Ar The rotor cross-sectional area in m2
Um The average wind speed/(m?s−1)
  
1 S AL-Yahyai, Y Charabi, A Gastli, S Al-Alawi. Assessment of wind energy potential locations in Oman using data from existing weather stations. Renewable & Sustainable Energy Reviews, 2010, 14(5): 1428–1436
https://doi.org/10.1016/j.rser.2010.01.008
2 M G Yazdani, M A Salam. Investigation on available wind energy at Tungkubeach. Frontiers in Energy, 2012, 6(3): 275–279
https://doi.org/10.1007/s11708-012-0194-x
3 N I Orlova , U A Tadzhiev, R A Zakhidov, A I Anarbaev . Calculation of vertical profile of wind velocity and power of wind flow on desert plains. Applied Solar Energy, 2008, 44(4): 295–299
4 C B Li, H Y Chen, J Zhu, J Zuo, G Zillante, Z Y Zhao. Comprehensive assessment of flexibility of the wind power industry chain. Renewable Energy, 2015, 74(2): 18–26
https://doi.org/10.1016/j.renene.2014.07.045
5 J A Santos, C Rochinha, M L R Liberato, M Reyers, J G Pinto. Projected changes in wind energy potentials over Iberia. Renewable Energy, 2015, 75(3): 68–80
https://doi.org/10.1016/j.renene.2014.09.026
6 J Z Wang, S S Qin, Q P Zhou, H Y Jiang. Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. Renewable Energy, 2015, 76(4): 91–101
https://doi.org/10.1016/j.renene.2014.11.011
7 D Djairam, P H F Morshuis, J J Smit. A novel method of wind energy generation-the electrostatic wind energy converter. IEEE Electrical Insulation Magazine, 2014, 30(4): 8–20
https://doi.org/10.1109/MEI.2014.6843763
8 R D Prasad, R C Bansal, M Sauturaga. Wind energy analysis for vadravadra site in Fiji Island: a case study. IEEE Transactions on Energy Conversion, 2009, 24(3): 750–757
https://doi.org/10.1109/TEC.2009.2025326
9 L Fagiano, T Marks. Design of a small-scale prototype for research in airborne wind energy. IEEE/ASME Transactions on Mechatronics, 2015, 20(1): 166–177
https://doi.org/10.1109/TMECH.2014.2322761
10 B G Kumaraswamy, B K Keshavan, Y T Ravikiran. Analysis of seasonal wind speed and wind power density distribution in Aimangala wind form at Chitradurga Karnataka using two parameter Weibull distribution function. In: 2011 IEEE Power and Energy Society General Meeting: the Electrification of Transportation and the Grid of the Future. Detroit, MI, USA, 2011, 6039587
11 A K Rajeevan, P V Shouri, U Nair. Identification of reliability of wind power generation and its mathematical modeling. In: 2013 Annual International Conference on Emerging Research Areas (AICERA 2013) and 2013 International Conference on Microelectronics, Communications and Renewable Energy (ICMiCR 2013). Kerala, India, 2013, 6576040
12 A M Elmabruk, F A Aleej, M M Badii. Estimation of wind energy in Libya. In: 2014 5th International Renewable Energy Congress (IREC 2014). Hammamet, Tunisia, 2014, 6826918
13 A Q Malik. Assessment of the potential of renewables for Brunei Darussalam. Renewable & Sustainable Energy Reviews, 2011, 15(1): 427–437
https://doi.org/10.1016/j.rser.2010.08.014
14 Horst Rinne. The Weibull Distribution: A Hand Book. Boca Raton: CRC Press, 2008
15 J Waewsak, C Chancham, M Landry, Y Gagnon. An analysis of wind speed distribution at Thasala, Nakhon Si Thammarat, Thailand. Journal of Sustainable Energy & Environment, 2011, 2: 51–55
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed