Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (1): 180-191   https://doi.org/10.1007/s11708-018-0537-3
  本期目录
永磁同步发电机-风能转换系统的基于反馈线性化和利亚普诺夫理论的鲁棒非线性控制
CHEIKH Ridha1(), MENACER Arezki2, CHRIFI-ALAOUI L.3, DRID Said4
1. Department of Electrical Engineering LGEB Laboratory, Biskra University, Biskra 07000, Algeria; Laboratory of Innovative Technology (LTI), University of Picardie Jules Verne, IUT de l'Aisne 02880 Cuffies, France; Unité de Développement des Equipements Solaires, UDES, Centre de Développement des Energies Renouvelables, CDER 42415 Tipaza, Algeria
2. Department of Electrical Engineering LGEB Laboratory, Biskra University, Biskra 07000, Algeria
3. Laboratory of Innovative Technology (LTI), University of Picardie Jules Verne, IUT de l'Aisne, 02880 Cuffies, France
4. LSPIE Laboratory, Department of Electrical Engineering, University of Batna2, Rue Chahid Med El-Hadi Boukhlof 05000, Algeria
Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system
Ridha CHEIKH1(), Arezki MENACER2, L. CHRIFI-ALAOUI3, Said DRID4
1. Department of Electrical Engineering LGEB Laboratory, Biskra University, Biskra 07000, Algeria; Laboratory of Innovative Technology (LTI), University of Picardie Jules Verne, IUT de l'Aisne 02880 Cuffies, France; Unité de Développement des Equipements Solaires, UDES, Centre de Développement des Energies Renouvelables, CDER 42415 Tipaza, Algeria
2. Department of Electrical Engineering LGEB Laboratory, Biskra University, Biskra 07000, Algeria
3. Laboratory of Innovative Technology (LTI), University of Picardie Jules Verne, IUT de l'Aisne, 02880 Cuffies, France
4. LSPIE Laboratory, Department of Electrical Engineering, University of Batna2, Rue Chahid Med El-Hadi Boukhlof 05000, Algeria
 全文: PDF(1284 KB)   HTML
摘要:

本文针对永磁同步发电机风能转换系统提出了一种非线性控制设计方法,以实现对扰动的鲁棒性和在典型的随机风环境下获得最大功率。比起基于传统控制技术的经典控制设计而言,本方法克服了非线性和参数不确定等问题。本方法基于微分几何反馈线性化技术和利亚普诺夫理论。结果验证了提出方法的有效性和性能。

Abstract

In this paper, the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system (WECS) is proposed in order to obtain robustness against disturbances and harvest a maximum power from a typical stochastic wind environment. The technique overcomes both the problem of nonlinearity and the uncertainty of the parameter compared to such classical control designs based on traditional control techniques. The method is based on the differential geometric feedback linearization technique (DGT) and the Lyapunov theory. The results obtained show the effectiveness and performance of the proposed approach.

Key wordspermanent magnet synchronous generator    wind energy conversion system    stochastic    differential geometric    feedback linearization    maximum power point tracking    Lyapunov    robust control
收稿日期: 2016-10-16      出版日期: 2020-03-16
通讯作者: CHEIKH Ridha     E-mail: cheikh_red@yahoo.fr
Corresponding Author(s): Ridha CHEIKH   
 引用本文:   
CHEIKH Ridha, MENACER Arezki, CHRIFI-ALAOUI L., DRID Said. 永磁同步发电机-风能转换系统的基于反馈线性化和利亚普诺夫理论的鲁棒非线性控制[J]. Frontiers in Energy, 2020, 14(1): 180-191.
Ridha CHEIKH, Arezki MENACER, L. CHRIFI-ALAOUI, Said DRID. Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system. Front. Energy, 2020, 14(1): 180-191.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-018-0537-3
https://academic.hep.com.cn/fie/CN/Y2020/V14/I1/180
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 N Harrabi, M Souissi, A Aitouche, M Chabaane. Intelligent control of wind conversion system based on PMSG using T-S Fuzzy Scheme. International Journal of Renewable Energy Research, 2015, 5(4): 52–60
2 M E Emna, K Adel, M F Mimouni. The wind energy conversion system using PMSG controlled by vector control and SMC strategies. International Journal of Renewable Energy Research, 2013, 3(1): 41–50
3 I Munteanu, A I Bratcu, N A Cutululis, E Ceang Ă. Optimal Control of Wind Energy Systems: Toward a Global Approach. London: Springer, 2008
4 N Yadaiah, N V Ramana. Linearization of multi-machine power system: modeling and control—a survey. International Journal of Electrical Power and Energy Systems, 2007, 29(4): 297–311
https://doi.org/10.1016/j.ijepes.2006.06.011
5 S Ghasemi, A Tabesh, J Askari-Marnani. Application of fractional calculus theory to robust controller design for wind turbine generators. IEEE Transactions on Energy Conversion, 2014, 29(3): 780–787
https://doi.org/10.1109/TEC.2014.2321792
6 A Tabesh, R Iravani. On the application of the complex torque coefficients method to the analysis of torsional dynamics. IEEE Transactions on Energy Conversion, 2005, 20(2): 268–275
https://doi.org/10.1109/TEC.2005.847970
7 A Tabesh, R Iravani. Frequency response analysis of torsional dynamics. IEEE Transactions on Power Systems, 2004, 19(3): 1430–1437
https://doi.org/10.1109/TPWRS.2004.831684
8 M Farmad, S Farhangi, G B Gharehpetian, S Afsharnia. Nonlinear controller design for IPC using feedback linearization method. International Journal of Electrical Power & Energy Systems, 2013, 44(1): 778–785
https://doi.org/10.1016/j.ijepes.2012.08.036
9 B Boukhezzar, H Siguerdidjane. Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Conversion and Management, 2009, 50(4): 885–892
https://doi.org/10.1016/j.enconman.2009.01.011
10 Z Shi, X Li, S Hu. Direct feedback linearization based control in variable air volume air-conditioning system. Procedia Physics, 2012, 24(Part B): 1248–1254
https://doi.org/10.1016/j.phpro.2012.02.187
11 M Bodson, J Chiasson. Differential-geometric methods for control of electric motors. International Journal of Robust and Nonlinear Control, 1998, 8(11): 923–954
https://doi.org/10.1002/(SICI)1099-1239(199809)8:11<923::AID-RNC369>3.0.CO;2-S
12 M R Tailor, P H Bhathawala. Linearization of nonlinear differential equation by Taylor’s series expansion and use of Jacobian linearization process. International Journal of Theoretical and Applied Science, 2011, 4(1): 36–38
13 H Jouybari-Moghaddam, S H Hosseinian, B Vahidi. Grid reconnection detection for synchronous distributed generators in stand-alone operation. International Transactions on Electrical Energy Systems, 2015, 25(1): 138–154
https://doi.org/10.1002/etep.1829
14 O Akhrif, F A Okou, L A Dessaint, R Champagne. Application of a multivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Transactions on Power Systems, 1999, 14(2): 620–628
https://doi.org/10.1109/59.761889
15 Q Lu, Y Z Sun. Nonlinear stabilizing control of multi machine systems. IEEE Transactions on Power Systems, 1988, 4(1): 36–38
https://doi.org/10.1109/59.32483
16 L R Hunt. R Su, G Meyer. Design for multi-input nonlinear systems in differential geometric control theory. Progress in Mathematics, 1982, 27:268–298
17 A Isodori. Nonlinear Control Systems. 3rd ed. Berlin: Springer-Verlag, 1995
18 M Beschi, M Berenguel, A Visioli, J L Guzmán, L J Yebra. Implementation of feedback linearization GPC control for a solar furnace. Journal of Process Control, 2013, 23(10): 1545–1554
https://doi.org/10.1016/j.jprocont.2013.02.002
19 X Yuan, Z Chen, Y Yuan, Y Huang, X Li, W Li. Sliding mode controller of hydraulic generator regulating system based on the input/output feedback linearization method. Mathematics and Computers in Simulation, 2016, 119(C): 18–34
https://doi.org/10.1016/j.matcom.2015.08.020
20 M A Mahboub, S Drid, M A Sid, R Cheikh. Robust direct power control based on the Lyapunov theory of a grid-connected brushless doubly fed induction generator. Frontiers in Energy, 2016, 10(3): 298–307
https://doi.org/10.1007/s11708-016-0411-0
21 H A Zarchi, R Arab Markadeh Gh, J Soltani. Direct torque and flux regulation of synchronous reluctance motor drives based on input–output feedback linearization. Energy Conversion and Management, 2010, 14(1): 71–80
https://doi.org/org/10.1016/j.enconman.2009.08.031
22 M Bouzidi, A Benaissa, S Barkat. Hybrid direct power/current control using feedback linearization of three-level four-leg voltage source shunt active power filter. International Journal of Electrical Power and Energy Systems, 2014, 61: 629–646
https://doi.org/10.1016/j.ijepes.2014.03.071
23 M Mehrasa, E Pouresmaeil, M F Akorede, B N Jorgensen, J P S Catalão. Multilevel converter control approach of active power filter for harmonics elimination in electric grids. Energy, 2015, 84: 722–731
https://doi.org/10.1016/j.energy.2015.03.038
24 M Alizadeh, S S Kojori. Augmenting effectiveness of control loops of a PMSG (permanent magnet synchronous generator) based wind energy conversion system by a virtually adaptive PI (proportional integral) controller. Energy, 2015, 91: 610–629
https://doi.org/10.1016/j.energy.2015.08.047
25 S Drid, M Tadjine, M S Nait-Said. Robust backstepping vector control for the doubly fed induction motor. IET Control Theory & Applications, 2007, 1(4): 861–868
https://doi.org/10.1049/iet-cta:20060053
26 M Mehrasa, E Pouresmaeil, S Zabihi, E M G Rodrigues, J P S Catalão. A control strategy for the stable operation of shunt active power filters in power grids. Energy, 2016, 96: 325–334
https://doi.org/10.1016/j.energy.2015.12.075
27 D C Phan, S Yamamoto. Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking. Energy, 2016, 111: 377–388
https://doi.org/10.1016/j.energy.2016.05.077
28 R Cheikh, A Menacer, S Drid. Robust control based on the Lyapunov theory of a grid-connected doubly fed induction generator. Frontiers in Energy, 2013, 7(2): 191–196
https://doi.org/10.1007/s11708-013-0245-y
29 F D Bianchi. Wind Turbine Control Systems: Principles, Modeling and Gain Scheduling Design. London: Springer-Verlag, 2007
30 H M Nguyen, D S Naidu. Direct fuzzy adaptive control for standalone wind energy conversion systems. In: Proceedings of the World Congress on Engineering and Computer Science, 2012, San Francisco, USA
31 C Nichita. Study and development of structures and digital control laws for the realization of 3 kW wind turbine simulator. Dissertation for the Doctoral Degree. France: Université du Havre, 1995 (in French)
32 E Welfonder, R Neifer, M Spanner. Development and experimental identification of dynamic models for wind turbines. Control Engineering Practice, 1997, 5(1): 63–73
https://doi.org/10.1016/S0967-0661(96)00208-0
33 J W Chapman, M D IIic, C A King, L Eng, H Kaufman. Stabilizing a multi machine power system via decentralized feedback linearizing excitation control. IEEE Transactions on Power Systems, 1993, 8(3): 830–839
https://doi.org/10.1109/59.260921
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed