Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2019, Vol. 13 Issue (2): 207-220   https://doi.org/10.1007/s11708-019-0628-9
  本期目录
基于二氧化钛半导体的光催化二氧化碳还原制备燃料
陈熙1, 金放鸣2()
1. 上海交通大学中英国际低碳学院,上海 201306,中国
2. 上海交通大学环境科学与工程学院,上海 200240,中国
Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels
Xi CHEN1, Fangming JIN2()
1. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
2. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China; School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(1268 KB)   HTML
摘要:

为应对全球变暖,控制和减少大气中的二氧化碳浓度至关重要。光催化还原二氧化碳制备燃料为解决该问题提供了方法,不仅能够对二氧化碳进行利用,而且同时生产了能源。目前为止,基于二氧化碳的半导体是在二氧化碳光催化还原中应用最为广泛的材料。因此,本篇小综述对近几年该领域的发展进行了总结。本文首先阐述了以结构工程的方法调控和提升二氧化碳催化剂性能的工作,之后描述了通过添加第二/第三种外源元素合成催化剂来改善二氧化碳催化剂的活性和选择性的工作。最后,本文介绍了基于二氧化碳的多元复合材料在二氧化碳催化还原中的应用。

Abstract

To tackle the crisis of global warming, it is imperative to control and mitigate the atmospheric carbon dioxide level. Photocatalytic reduction of carbon dioxide into solar fuels furnishes a gratifying solution to utilize and reduce carbon dioxide emission and simultaneously generate renewable energy to sustain the societies. So far, titanium oxide-based semiconductors have been the most prevalently adopted catalysts in carbon dioxide photoreduction. This mini-review provides a general summary of the recent progresses in titanium oxide-catalyzed photocatalytic reduction of carbon dioxide. It first illustrates the use of structural engineering as a strategy to adjust and improve the catalytic performances. Then, it describes the introduction of one/two exogenous elements to modify the photocatalytic activity and/or selectivity. Lastly, it discusses multi-component hybrid titanium oxide composites.

Key wordsphotocatalysis    carbon dioxide reduction    semiconductors    titanium oxide    renewable fuels
收稿日期: 2018-12-15      出版日期: 2019-07-04
通讯作者: 金放鸣     E-mail: fmjin@sjtu.edu.cn
Corresponding Author(s): Fangming JIN   
 引用本文:   
陈熙, 金放鸣. 基于二氧化钛半导体的光催化二氧化碳还原制备燃料[J]. Frontiers in Energy, 2019, 13(2): 207-220.
Xi CHEN, Fangming JIN. Photocatalytic reduction of carbon dioxide by titanium oxide-based semiconductors to produce fuels. Front. Energy, 2019, 13(2): 207-220.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0628-9
https://academic.hep.com.cn/fie/CN/Y2019/V13/I2/207
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Co-catalyst TiO2 type Light source S/% Product Production /(mmol?(g?h)−1) Ref.
1 Ag NPs P25 UV-vis - CH4 (gas)
CH3OH (aqueous)
1.4
4.3
[44]
2 In P25 UV 69 CH4 244.0 [45]
3 Cu P25 UV-rich - HCOOH 25.7 [46]
4 CuO P25 UV - CO 14.5 [47]
5 Cu0 P25 UV - CH4 30.1 [47]
6 Pt-Cu2O P25 UV-vis 85 CH4 33.0 [48]
7 Pt-MgO P25 UV-vis 83 CH4 8.9 [49]
8 Au-Cu P25 Smulated sunlight 97 CH4 2000 [50]
9 Cu-Pt P25 UV-vis - CH4 11.4 [51]
10 Pt-Cu2O TiO2 NCs UV 97 CH4 1.4 [52]
11 Au-Cu SrTiO3/TiO2 UV-vis - CH4 421.2 [53]
12 Cu-Pt TiO2 NTAs Simulated sunlight - CH4 0.6 [54]
13 Au TiO2 NTAs Simulated sunlight - CH4 58.5 [55]
14 Ru TiO2 NTAs Simulated sunlight - CH4 26.4 [55]
15 Zn-Pd TiO2 NTAs Simulated sunlight - CH4 26.8 [55]
16 Ag-Pd N-doped TiO2 NSs Simulated sunlight - CH4 79.0 [56]
17 Cu-In P25 UV 99 CO 6.5 [58]
18 Ni-In P25 UV 99.7 CO 12.0 [59]
19 Au-In P25 UV 99 CO 9.0 [57]
20 Cu-In TiO2 NPs UV 92
66
CH4
CH3OH
181.0
68.0
[60]
21 Cu-V P25 & PU Visible - CH4
CO
933.0
588.0
[61]
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 T L Frölicher, E M Fischer, Gruber N. Marine heatwaves under global warming. Nature, 2018, 560(7718): 360–364
https://doi.org/10.1038/s41586-018-0383-9
2 F Dottori, W Szewczyk, J C Ciscar, F Zhao, L Alfieri, Y Hirabayashi, A Bianchi, I Mongelli, K Frieler, R A Betts, L Feyen. Increased human and economic losses from river flooding with anthropogenic warming. Nature Climate Change, 2018, 8(9): 781–786
https://doi.org/10.1038/s41558-018-0257-z
3 G P Peters, R M Andrew, T Boden, J G Canadell, P Ciais, C Le Quéré, G Marland, M R Raupach, C Wilson. The challenge to keep global warming below 2°C. Nature Climate Change, 2013, 3(1): 4–6
https://doi.org/10.1038/nclimate1783
4 Research Laboratory Earth System. Trends in Atmospheric Carbon Dioxide. Global Greenhouse Gas Reference Network, 2019
5 L C Buelens, V V Galvita, H Poelman, C Detavernier, G B Marin. Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science, 2016, 354(6311): 449–452
https://doi.org/10.1126/science.aah7161
6 T P Senftle, E A Carter. The Holy Grail: Chemistry enabling an economically viable CO2 capture, utilization, and storage strategy. Accounts of Chemical Research, 2017, 50(3): 472–475
https://doi.org/10.1021/acs.accounts.6b00479
7 F D Meylan, V Moreau, S Erkman. CO2 utilization in the perspective of industrial ecology, an overview. Journal of CO2 Utilization, 2015, 12: 101–108
https://doi.org/10.1016/j.jcou.2015.05.003
8 H Zhai, Y Ou, E S Rubin. Opportunities for decarbonizing existing U.S. coal-fired power plants via CO2 capture, utilization and storage. Environmental Science & Technology, 2015, 49(13): 7571–7579
https://doi.org/10.1021/acs.est.5b01120
9 A A Olajire. Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes. Journal of CO2 Utilization, 2013, 3–4: 74–92
https://doi.org/10.1016/j.jcou.2013.10.004
10 S Moret, P J Dyson, G Laurenczy. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nature Communications, 2014, 5(1): 4017
https://doi.org/10.1038/ncomms5017
11 A Goeppert, M Czaun, J P Jones, G K Surya Prakash, G A Olah. Recycling of carbon dioxide to methanol and derived products – closing the loop. Chemical Society Reviews, 2014, 43(23): 7995–8048
https://doi.org/10.1039/C4CS00122B
12 Qiao J, Liu Y, Hong F, Zhang J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society Reviews, 2014, 43(2): 631–675
https://doi.org/10.1039/C3CS60323G
13 N S Lewis, D G Nocera. Powering the planet: chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729–15735
https://doi.org/10.1073/pnas.0603395103
14 T Inoue, A Fujishima, S Konishi, K Honda. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 1979, 277(5698): 637–638
https://doi.org/10.1038/277637a0
15 J Low, B Cheng, J Yu. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Applied Surface Science, 2017, 392: 658–686
https://doi.org/10.1016/j.apsusc.2016.09.093
16 J L White, M F Baruch, J E III Pander, Y Hu, I C Fortmeyer, J E Park, T Zhang, K Liao, J Gu, Y Yan, T W Shaw, E Abelev, A B Bocarsly. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chemical Reviews, 2015, 115(23): 12888–12935
https://doi.org/10.1021/acs.chemrev.5b00370
17 S N Habisreutinger, L Schmidt-Mende, J K Stolarczyk. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408
https://doi.org/10.1002/anie.201207199
18 T Sakakura, J C Choi, H Yasuda. Transformation of carbon dioxide. Chemical Reviews, 2007, 107(6): 2365–2387
https://doi.org/10.1021/cr068357u
19 W Wang, S Wang, X Ma, J Gong. Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 2011, 40(7): 3703–3727
https://doi.org/10.1039/c1cs15008a
20 S C Roy, O K Varghese, M Paulose, C A Grimes. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 2010, 4(3): 1259–1278
https://doi.org/10.1021/nn9015423
21 W Kim, B A McClure, E Edri, H Frei. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chemical Society Reviews, 2016, 45(11): 3221–3243
https://doi.org/10.1039/C6CS00062B
22 L Zhang, Z J Zhao, J Gong. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angewandte Chemie International Edition, 2017, 56(38): 11326–11353
https://doi.org/10.1002/anie.201612214
23 K Ma, Y Tian, Z J Zhao, Q Cheng, T Ding, J Zhang, L Zheng, Z Jiang, T Abe, N Tsubaki, J Gong, X Li. Achieving efficient and robust catalytic reforming on dual-sites of Cu species. Chemical Science (Cambridge), 2019, 10(9): 2578–2584
https://doi.org/10.1039/C9SC00015A
24 Z Li, Y Qu, J Wang, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts. Joule, 2019, 3(2): 570–580
https://doi.org/10.1016/j.joule.2018.10.027
25 Y Wang, Z Zhang, L Zhang, Z Luo, J Shen, H Lin, J Long, J C S Wu, X Fu, X Wang, C Li. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. Journal of the American Chemical Society, 2018, 140(44): 14595–14598
https://doi.org/10.1021/jacs.8b09344
26 T Kawahara, Y Konishi, H Tada, N Tohge, J Nishii, S Ito. A patterned TiO2 (anatase)/TiO2 (rRutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angewandte Chemie, 2002, 114(15): 2935–2937
https://doi.org/10.1002/1521-3757(20020802)114:15<2935::AID-ANGE2935>3.0.CO;2-6
27 T Ohno, K Tokieda, S Higashida, M Matsumura. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A, General, 2003, 244(2): 383–391
https://doi.org/10.1016/S0926-860X(02)00610-5
28 T A Kandiel, R Dillert, A Feldhoff, D W Bahnemann. Direct synthesis of photocatalytically active rutile TiO2 nanorods partly decorated with anatase nanoparticles. Journal of Physical Chemistry C, 2010, 114(11): 4909–4915
https://doi.org/10.1021/jp912008k
29 L L Tan, W J Ong, S P Chai, A R Mohamed. Visible-light-activated oxygen-rich TiO2 as next generation photocatalyst: importance of annealing temperature on the photoactivity toward reduction of carbon dioxide. Chemical Engineering Journal, 2016, 283: 1254–1263
https://doi.org/10.1016/j.cej.2015.07.093
30 P Reñones, A Moya, F Fresno, L Collado, J J Vilatela, V A de la Peña O’Shea. Hierarchical TiO2 nanofibres as photocatalyst for CO2 reduction: influence of morphology and phase composition on catalytic activity. Journal of CO2 Utilization, 2016, 15: 24–31
https://doi.org/10.1016/j.jcou.2016.04.002
31 X Han, Q Kuang, M Jin, Z Xie, L Zheng. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. Journal of the American Chemical Society, 2009, 131(9): 3152–3153
https://doi.org/10.1021/ja8092373
32 H G Yang, C H Sun, S Z Qiao, J, Zou G Liu, S C Smith, H M Cheng, G Q Lu. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638–641
https://doi.org/10.1038/nature06964
33 A Selloni. Anatase shows its reactive side. Nature Materials, 2008, 7(8): 613–615
https://doi.org/10.1038/nmat2241
34 J Yu, J Low, W Xiao, P Zhou, M Jaroniec. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. Journal of the American Chemical Society, 2014, 136(25): 8839–8842
https://doi.org/10.1021/ja5044787
35 L Liu, Y Jiang, H Zhao, J Chen, J Cheng, K Yang, Y Li. Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catalysis, 2016, 6(2): 1097–1108
https://doi.org/10.1021/acscatal.5b02098
36 N Wu, J Wang, D N Tafen, H Wang, J G Zheng, J P Lewis, X Liu, S S Leonard, A Manivannan. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. Journal of the American Chemical Society, 2010, 132(19): 6679–6685
https://doi.org/10.1021/ja909456f
37 S Liu, J Xia, J Yu. Amine-functionalized titanate nanosheet-assembled Yolk@Shell microspheres for efficient cocatalyst-free visible-light photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2015, 7(15): 8166–8175
https://doi.org/10.1021/acsami.5b00982
38 X Chen, L Liu, P Y Yu, S S Mao. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750
https://doi.org/10.1126/science.1200448
39 A Naldoni, M Allieta, S Santangelo, M Marelli, F Fabbri, S Cappelli, C L Bianchi, R Psaro, V Dal Santo. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. Journal of the American Chemical Society, 2012, 134(18): 7600–7603
https://doi.org/10.1021/ja3012676
40 Y H Hu. A highly efficient photocatalyst—hydrogenated black TiO2 for the photocatalytic splitting of water. Angewandte Chemie International Edition, 2012, 51(50): 12410–12412
https://doi.org/10.1002/anie.201206375
41 H Cui, W Zhao, C Yang, H Yin, T Lin, Y Shan, Y Xie, H Gu, F Huang. Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(23): 8612–8616
https://doi.org/10.1039/C4TA00176A
42 T Leshuk, R Parviz, P Everett, H Krishnakumar, R A Varin, F Gu. Photocatalytic activity of hydrogenated TiO2. ACS Applied Materials & Interfaces, 2013, 5(6): 1892–1895
https://doi.org/10.1021/am302903n
43 B Han, W Wei, L Chang, P Cheng, Y H Hu. Efficient visible light photocatalytic CO2 reforming of CH4. ACS Catalysis, 2016, 6(2): 494–497
https://doi.org/10.1021/acscatal.5b02653
44 B Yu, Y, Zhou P Li, W Tu, P Li, L Tang, J Ye, Z Zou. Photocatalytic reduction of CO2 over Ag/TiO2 nanocomposites prepared with a simple and rapid silver mirror method. Nanoscale, 2016, 8(23): 11870–11874
https://doi.org/10.1039/C6NR02547A
45 M Tahir, N S Amin. Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Applied Catalysis B: Environmental, 2015, 162: 98–109
https://doi.org/10.1016/j.apcatb.2014.06.037
46 F Gonell, A V Puga, B Julián-López, H García, A Corma. Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Applied Catalysis B: Environmental, 2016, 180: 263–270
https://doi.org/10.1016/j.apcatb.2015.06.019
47 B Fang, Y Xing, A Bonakdarpour, S Zhang, D P Wilkinson. Hierarchical CuO–TiO2 hollow microspheres for highly efficient photodriven reduction of CO2 to CH4. ACS Sustainable Chemistry & Engineering, 2015, 3(10): 2381–2388
https://doi.org/10.1021/acssuschemeng.5b00724
48 Q Zhai, S Xie, W Fan, Q Zhang, Y Wang, W Deng, Y Wang. Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core–shell structure. Angewandte Chemie, 2013, 125(22): 5888–5891
https://doi.org/10.1002/ange.201301473
49 S Xie, Y Wang, Q Zhang, W Deng, Y Wang. MgO- and Pt-Promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catalysis, 2014, 4(10): 3644–3653
https://doi.org/10.1021/cs500648p
50 Ş Neaţu, J A Maciá-Agulló, P Concepción, H Garcia. Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. Journal of the American Chemical Society, 2014, 136(45): 15969–15976
https://doi.org/10.1021/ja506433k
51 S Lee, S Jeong, W D Kim, S Lee, K Lee, W K Bae, J H Moon, S Lee, D C Lee. Low-coordinated surface atoms of CuPt alloy cocatalysts on TiO2 for enhanced photocatalytic conversion of CO2. Nanoscale, 2016, 8(19): 10043–10048
https://doi.org/10.1039/C6NR02124G
52 Z Xiong, Z Lei, C C Kuang, X Chen, B Gong, Y Zhao, J Zhang, C Zheng, J C S Wu. Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: the interaction between Pt and Cu2O cocatalysts. Applied Catalysis B: Environmental, 2017, 202: 695–703
https://doi.org/10.1016/j.apcatb.2016.10.001
53 Q Kang, T Wang, P Li, L Liu, K Chang, M Li, J Ye. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au–Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angewandte Chemie, 2015, 127(3): 855–859
https://doi.org/10.1002/ange.201409183
54 S Farsinezhad, H Sharma, K Shankar. Interfacial band alignment for photocatalytic charge separation in TiO2 nanotube arrays coated with CuPt nanoparticles. Physical Chemistry Chemical Physics, 2015, 17(44): 29723–29733
https://doi.org/10.1039/C5CP05679A
55 P Kar, S Farsinezhad, N Mahdi, Y Zhang, U Obuekwe, H Sharma, J Shen, N Semagina, Shankar K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Research, 2016, 9(11): 3478–3493
https://doi.org/10.1007/s12274-016-1225-4
56 D Tan, J, Zhang J, Shi S, Li B Zhang, X Tan, F Zhang, L Liu, D Shao, B Han. Photocatalytic CO2 transformation to CH4 by Ag/Pd bimetals supported on N-Doped TiO2 nanosheet. ACS Applied Materials & Interfaces, 2018, 10(29): 24516–24522
https://doi.org/10.1021/acsami.8b06320
57 B Tahir, M Tahir, N S Amin. Gold–indium modified TiO2 nanocatalysts for photocatalytic CO2 reduction with H2 as reductant in a monolith photoreactor. Applied Surface Science, 2015, 338: 1–14
https://doi.org/10.1016/j.apsusc.2015.02.126
58 M Tahir, N S Amin. Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor. Applied Catalysis A, General, 2015, 493: 90–102
https://doi.org/10.1016/j.apcata.2014.12.053
59 M Tahir, N S Amin. Performance analysis of nanostructured NiO–In2O3/TiO2 catalyst for CO2 photoreduction with H2 in a monolith photoreactor. Chemical Engineering Journal, 2016, 285: 635–649
https://doi.org/10.1016/j.cej.2015.10.033
60 M Tahir, B Tahir, N A Saidina Amin, H Alias. Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst. Applied Surface Science, 2016, 389: 46–55
https://doi.org/10.1016/j.apsusc.2016.06.155
61 T D Pham, B K Lee. Novel photocatalytic activity of Cu@V co-doped TiO2/PU for CO2 reduction with H2O vapor to produce solar fuels under visible light. Journal of Catalysis, 2017, 345: 87–95
https://doi.org/10.1016/j.jcat.2016.10.030
62 R Asahi, T Morikawa, H Irie, T Ohwaki. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chemical Reviews, 2014, 114(19): 9824–9852
https://doi.org/10.1021/cr5000738
63 M S Akple, J Low, Z Qin, S Wageh, A A Al-Ghamdi, J Yu, S Liu. Nitrogen-doped TiO2 microsheets with enhanced visible light photocatalytic activity for CO2 reduction. Chinese Journal of Catalysis, 2015, 36(12): 2127–2134
https://doi.org/10.1016/S1872-2067(15)60989-5
64 Z Zhang, Z Huang, X Cheng, Q Wang, Y Chen, P Dong, X Zhang. Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources. Applied Surface Science, 2015, 355: 45–51
https://doi.org/10.1016/j.apsusc.2015.07.097
65 K Wang, J Yu, L Liu, L Hou, F Jin. Hierarchical P-doped TiO2 nanotubes array@Ti plate: towards advanced CO2 photocatalytic reduction catalysts. Ceramics International, 2016, 42(14): 16405–16411
https://doi.org/10.1016/j.ceramint.2016.07.149
66 J O Olowoyo, M Kumar, S L Jain, S Shen, Z Zhou, S S Mao, A V Vorontsov, U Kumar. Reinforced photocatalytic reduction of CO2 to fuel by efficient S-TiO2: significance of sulfur doping. International Journal of Hydrogen Energy, 2018, 43(37): 17682–17695
https://doi.org/10.1016/j.ijhydene.2018.07.193
67 Z He, Y Yu, D Wang, J Tang, J Chen, S Song. Photocatalytic reduction of carbon dioxide using iodine-doped titanium dioxide with high exposed {001} facets under visible light. RSC Advances, 2016, 6(28): 23134–23140
https://doi.org/10.1039/C5RA26761G
68 W Tu, Y Zhou, Q Liu, S Yan, S Bao, X Wang, M Xiao, Z Zou. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Advanced Functional Materials, 2013, 23(14): 1743–1749
https://doi.org/10.1002/adfm.201202349
69 K Wada, C S K Ranasinghe, R Kuriki, A Yamakata, O Ishitani, K Maeda. Interfacialmanipulation by rutile TiO2 nanoparticles to boost CO2 reduction into CO on a metal-complex/semiconductor hybrid photocatalyst. ACS Applied Materials & Interfaces, 2017, 9(28): 23869–23877
https://doi.org/10.1021/acsami.7b07484
70 B Jin, G Yao, F Jin, Y H Hu. Photocatalytic conversion of CO2 over C3N4-based catalysts. Catalysis Today, 2018, 316: 149–154
https://doi.org/10.1016/j.cattod.2018.05.010
71 H Li, Y Gao, X Wu, P H Lee, K Shih. Fabrication of heterostructured g-C3N4/Ag-TiO2 hybrid photocatalyst with enhanced performance in photocatalytic conversion of CO2 under simulated sunlight irradiation. Applied Surface Science, 2017, 402: 198–207
https://doi.org/10.1016/j.apsusc.2017.01.041
72 C Dong, M Xing, J Zhang. Double-cocatalysts promote charge separation efficiency in CO2 photoreduction: spatial location matters. Materials Horizons, 2016, 3(6): 608–612
https://doi.org/10.1039/C6MH00210B
73 X Meng, T Wang, L Liu, S Ouyang, P Li, H Hu, T Kako, H Iwai, A Tanaka, J Ye. Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angewandte Chemie International Edition, 2014, 53(43): 11478–11482
https://doi.org/10.1002/anie.201404953
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed