Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (1): 11-17   https://doi.org/10.1007/s11708-019-0634-y
  本期目录
负载纳米零价铁的D001树脂对99Tc吸附研究
付凌霄1, 俎建华1(), HE Linfeng2, 顾恩熙1, 王焕1
1. 上海交通大学核工程学院
2. Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
An adsorption study of 99Tc using nanoscale zero-valent iron supported on D001 resin
Lingxiao FU1, Jianhua ZU1(), Linfeng HE2, Enxi GU1, Huan WANG1
1. School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
 全文: PDF(1644 KB)   HTML
摘要:

负载纳米零价铁的D001树脂(D001-nZVI)被合成出来,被用来吸附高溶解性和迁移性的放射性核素99Tc。Re(VII)作为Tc(VII)的替代物, 在分批实验中被用来调查D001-nZVI 移除Tc(VII)的可行性和吸附机理。pH , 树脂质量对D001-nZVI 吸附Re(VII)的影响进行了研究,发现D001-nZVI 吸附Re(VII)最大吸附效率是在溶液pH=3且固液比为20 g/L。XRD表征显示出D001-nZVI将 ReO4还原成ReO2固体吸附在了D001-nZVI上。基于D001-nZVI对Re(VII)最优吸附条件,D001-nZVI对Tc(VII)移除实验也进行了研究,同样条件下对Tc(VII)吸附效率可达94%。柱试验展示出Thomas模型能够很好地描述Re(VII)在D001-nZVI上的吸附过程,同时最大动态吸附容量为0.2910 mg/g。

Abstract

Nanoscale zero-valent iron (nZVI) supported on D001 resin (D001-nZVI) was synthesized for adsorption of high solubility and mobility radionuclide 99Tc. Re(VII), a chemical substitute for 99Tc, was utilized in batch experiments to investigate the feasibility and adsorption mechanism toward Tc(VII). Factors (pH, resin dose) affecting Re(VII) adsorption were studied. The high adsorption efficiency of Re(VII) at pH= 3 and the solid-liquid ratio of 20 g/L. X-ray diffraction patterns revealed the reduction of ReO4 into ReO2 immobilized in D001-nZVI. Based on the optimum conditions of Re(VII) adsorption, the removal experiments of Tc(VII) were conducted where the adsorption efficiency of Tc(VII) can reach 94%. Column experiments showed that the Thomas model gave a good fit to the adsorption process of Re(VII) and the maximum dynamic adsorption capacity was 0.2910 mg/g.

Key wordstechnetium    nanoscale zero-valent iron (nZVI)    D001 resin    adsorption
收稿日期: 2018-11-02      出版日期: 2020-03-16
通讯作者: 俎建华     E-mail: zujianhua@sjtu.edu.cn
Corresponding Author(s): Jianhua ZU   
 引用本文:   
付凌霄, 俎建华, HE Linfeng, 顾恩熙, 王焕. 负载纳米零价铁的D001树脂对99Tc吸附研究[J]. Frontiers in Energy, 2020, 14(1): 11-17.
Lingxiao FU, Jianhua ZU, Linfeng HE, Enxi GU, Huan WANG. An adsorption study of 99Tc using nanoscale zero-valent iron supported on D001 resin. Front. Energy, 2020, 14(1): 11-17.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0634-y
https://academic.hep.com.cn/fie/CN/Y2020/V14/I1/11
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Pseudo-first-order Pseudo-second-order
k1/(min-1) R2 k2/(g?mg-1?min-1) R2
0.00461 0.9740 0.012 0.9968
Tab.1  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Metal ion Regression equation kT/(mL?min−1?mg−1) q0/(mg?g−1) R2
Re(VII) ln?( C0C e1)=1.31813.933V 0.4170 0.2910 0.991
Tab.2  
1 L S Chen, T H Wang, Y K Hsieh, L W Jian, W H Chen, T L Tsai, C F Wang. Accurate technetium-99 determination using the combination of TEVA resin pretreatment and ICP-MS measurement and its influence on the Tc-99/Cs-137 scaling factor calculation. Journal of Radio Analytical and Nuclear Chemistry, 2014, 299(3): 1883–1889
https://doi.org/10.1007/s10967-014-2931-6
2 L Zhu, D Sheng, C Xu, X Dai, M A Silver, J Li, P Li, Y Wang, Y Wang, L Chen, C Xiao, J Chen, R Zhou, C Zhang, O K Farha, Z Chai, T E Albrecht-Schmitt, S Wang. Identifying the recognition site for selective trapping of T cO4− 99. Journal of the American Chemical Society, 2017, 139(42): 14873–14876
https://doi.org/10.1021/jacs.7b08632
3 G W Gee, M Oostrom, M D Freshley, M L Rockhold, J M Zachara. Hanford site vadose zone studies: an overview. Vadose Zone Journal, 2007, 6(4): 899–905
https://doi.org/10.2136/vzj2006.0179
4 L Liang, B Gu, X Yin. Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Separations Technology, 1996, 6(2): 111–122
https://doi.org/10.1016/0956-9618(96)00148-8
5 J P Icenhower, N P Qafoku, W J Martin, et al. The geochemistry of technetium: a summary of the behavior of an artificial element in the natural environment. Report PNNL-18139. Richland, Washington, USA: Pacific Northwest National Laboratory, 2008
6 J A Rard, M H Rand, G Anderegg, et al. Chemical Thermodynamics of Technetium. Amsterdam: Elsevier, 1999
7 B A Lenell, Y Arai. Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media. Journal of Hazardous Materials, 2017, 321: 335–343
https://doi.org/10.1016/j.jhazmat.2016.09.024
8 T Tosco, M Petrangeli Papini, C Cruz Viggi, R Sethi. Nanoscale zerovalent iron particles for groundwater remediation: a review. Journal of Cleaner Production, 2014, 77: 10–21
https://doi.org/10.1016/j.jclepro.2013.12.026
9 G Sheng, Y Tang, W Linghu, L Wang, J Li, H Li, X Wang, Y Huang. Enhanced immobilization of ReO4− by nanoscale zerovalent iron supported on layered double hydroxide via an advanced XAFS approach: implications for TcO4− sequestration. Applied Catalysis B: Environmental, 2016, 192: 268–276
https://doi.org/10.1016/j.apcatb.2016.04.001
10 J Li, C Chen, R Zhang, X Wang. Reductive immobilization of Re (VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique. Science China Chemistry, 2016, 59(1): 150–158
https://doi.org/10.1007/s11426-015-5452-4
11 H F Liu, T W Qian, D Y Zhao. Reductive immobilization of perrhenate in soil and groundwater using starch-stabilized ZVI nanoparticles. Chinese Science Bulletin, 2013, 58(2): 275–281
https://doi.org/10.1007/s11434-012-5425-3
12 Q Ding, T Qian, F Yang, H Liu, L Wang, D Zhao, M Zhang. Kinetics of reductive immobilization of rhenium in soil and groundwater using zero valent iron nanoparticles. Environmental Engineering Science, 2013, 30(12): 713–718
https://doi.org/10.1089/ees.2012.0160
13 I H Yoon, S Bang, J S Chang, M Gyu Kim, K W Kim. Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems. Journal of Hazardous Materials, 2011, 186(1): 855–862
https://doi.org/10.1016/j.jhazmat.2010.11.074
14 C Xiong, C Yao, L Wang, J Ke. Adsorption behavior of Cd(II) from aqueous solutions onto gel-type weak acid resin. Hydrometallurgy, 2009, 98(3–4): 318–324
https://doi.org/10.1016/j.hydromet.2009.05.008
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed