Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2020, Vol. 14 Issue (1): 1-10   https://doi.org/10.1007/s11708-019-0655-6
  本期目录
基于钾热管堆的自由活塞斯特林发电机空间能源系统
林明嫱1,2, 牟健1(), 池春云1,2, 洪国同1,2, 葛攀和3, 胡古3
1. 中国科学院理化技术研究所,中国科学院空间功热转换技术重点实验室
2. 中国科学院大学
3. 中国原子能科学研究院
A space power system of free piston Stirling generator based on potassium heat pipe
Mingqiang LIN1, Jian MOU1(), Chunyun CHI1, Guotong HONG1, Panhe GE2, Gu HU2
1. Key Laboratory of Space Energy Conversion Technology, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
2. China Institute of Atomic Energy, China National Nuclear Corporation, Beijing 100822, China
 全文: PDF(2391 KB)   HTML
摘要:

本文研究了一种基于钾热管堆的自由活塞斯特林发电机能源系统。自由活塞斯特林发电机具有热电效率高、寿命长、可靠性高等优点,在深空探索领域应用前景广泛。本文首先针对空间应用的自由活塞斯特林发电机研究进展进行了详细的阐述。而后,利用Sage软件开展了自由活塞斯特林发电机一维热力学模拟分析,基于此设计了单机重量仅为4.2kg的实验样机,单机输出功率142.4W,热电效率达到17.4%。最后,将4台自由活塞斯特林发电机与钾热管堆集合成能源系统,并开展了整体实验和单机故障试验。实验结果表明,该系统稳定输出电功超过300 W,整体热电效率达到了7.36%,由此验证了该能源系统的可行性。

Abstract

The power system of a free piston Stirling generator (FPSG) based on potassium heat pipes has been developed in this paper. Thanks to the advantages of long life, high reliability, and high overall thermal efficiency, the FPSG is a promising candidate for nuclear energy, especially in space exploration. In this paper, the recent progress of FPSG based on nuclear reactor for space use was briefly reviewed. A novel FPSG weighted only 4.2 kg was designed, and one dimensional thermodynamic modeling of the FPSG using Sage software was performed to estimate its performance. The experiment results indicated that this FPSG could provide 142.4 W at a thermal-to-electric efficiency of nearly 17.4%. Besides, the power system integrated with four FPSGs and potassium heat pipes was performed and the single machine failure test was conducted. The results show that this system could provide an electrical power of 300 W at an overall thermal efficiency of 7.3%. Thus, it is concluded that this power system is feasible and will have a great prospect for future applications.

Key wordsfree piston Stirling generator (FPSG)    potassium heat pipe    power system    energy conversion
收稿日期: 2019-05-29      出版日期: 2020-03-16
通讯作者: 牟健     E-mail: jmou@mail.ipc.ac.cn
Corresponding Author(s): Jian MOU   
 引用本文:   
林明嫱, 牟健, 池春云, 洪国同, 葛攀和, 胡古. 基于钾热管堆的自由活塞斯特林发电机空间能源系统[J]. Frontiers in Energy, 2020, 14(1): 1-10.
Mingqiang LIN, Jian MOU, Chunyun CHI, Guotong HONG, Panhe GE, Gu HU. A space power system of free piston Stirling generator based on potassium heat pipe. Front. Energy, 2020, 14(1): 1-10.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-019-0655-6
https://academic.hep.com.cn/fie/CN/Y2020/V14/I1/1
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Variable Value
Charge pressure/MPa 4.5
Temperature of heat source/K 800
Temperature of cold source/K 300
Mass of displacer/kg 0.04
Mass of piston/kg 0.5
Sectional area of displacer/mm2 530.9
Sectional area of piston/mm2 492.4
Sectional area of displacer rod/mm2 38.5
Equilibrium volume of compression space/mm3 7963.9
Equilibrium volume of expansion space/mm3 4778.4
Bounce space volume/mm3 31800
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Parameter No.1 FPSG No.2 FPSG No.3 FPSG No.4 FPSG
Power/We 71.31 74.5 86.87 67.42
Frequency/Hz 61.08 61.09 61.11 61.09
Current/A 1.205 1.232 1.311 1.172
Voltage/V 58.861 60.42 66.188 57.553
Temperature difference/°C 14.8 15.72 17.9 16.2
Flow/(Lh–1) 44.198 41.838 48.688 47.890
Rejected heat/W 760.6 764.751 1013.379 902. 104
Efficiency 8.5% 8.9% 7.89% 6.95%
Tab.2  
Fig.16  
Fig.17  
Fig.18  
1 D Beard, W G Anderson, C Tarau High. Temperature water heat pipes for kilopower system. In: 15th International Energy Conversion Engineering Conference, Atlanta, USA, 2017
https://doi.org/10.2514/6.2017-4698
2 C Wang, J Chen, S Qiu, W Tian, D Zhang, G H Su. Performance analysis of heat pipe radiator unit for space nuclear power reactor. Annals of Nuclear Energy, 2017, 103: 74–84
https://doi.org/10.1016/j.anucene.2017.01.015
3 J M P Tournier, M S El-Genk. Liquid metal loop and heat pipe radiator for space reactor power systems. Journal of Propulsion and Power, 2006, 22(5): 1117–1134
https://doi.org/10.2514/1.20031
4 G M Gryaznov, V A Evtikhin, A N Chumanov, I P Bogush, I E Lyublinskii, A V Vertkov, N M Afanas’ev, V I Ionkin, I K Merkurisov, V I Yarygin. Parametric analysis of a number of space nuclear power systems with a heat-pipe energy-conversion system. Atomic Energy, 2000, 89(1): 541–545
https://doi.org/10.1007/BF02673513
5 M S El-Genk. Energy conversion technologies for advanced radioisotope and nuclear reactor power systems for future planetary exploration. In: 21st International Conference on Thermoelectrics, Long Beach, USA, 2002, 375–380
6 Q Zhou, Y Xia, G Liu, X Ouyang. A miniature integrated nuclear reactor design with gravity independent. Nuclear Engineering and Design, 2018, 340: 9–16
https://doi.org/10.1016/j.nucengdes.2018.09.013
7 S Qiu, Y Gao, G Rinker, K Yanaga. Development of an advanced free-piston Stirling engine for micro combined heating and power application. Applied Energy, 2019, 235: 987–1000
https://doi.org/10.1016/j.apenergy.2018.11.036
8 J Mou, W Li, J Li, G Hong. Gas action effect of free piston Stirling engine. Energy Conversion and Management, 2016, 110: 278–286
https://doi.org/10.1016/j.enconman.2015.12.020
9 M A Gibson, M H Briggs, J L Sanzi, M H Brace. Heat powered Stirling conversion for the demonstration using flattop fission (DUFF) test. In: Nuclear and Emerging Technologies for Space Conference, Albuquerque, NM, USA, 2013
10 L Mason, J Casani, J Elliott, J P Fleurial, D Macpherson, B Nesmith , M Houts, R Bechtel, J, Werner R Kapernick, D Poston, L Qualls, R Lipinski, R Radel , S Bailey, A Weitzberg. A small fission power system for NASA planetary science missions. In: Proceedings of Nuclear and Emerging Technologies for Space 2011, Albuquerque, NM, USA, 2011.
11 D I Poston, M Gibson, P R Mc Clure, T J Godfroy . Results of the KRUSTY nuclear system test. In: Proceedings NETS-2019, ANS, Richland, WA, USA, 2019
12 D I Poston, M Gibson, T J Godfroy , P R Mc Clure. Design of the KRUSTY reactor. In: Proceedings NETS-2018, ANS, Las Vegas, NV, USA, 2018.
13 D I , Poston, M Gibson, C Bowman, J Creasy . Kilopower space reactor concept- reactor materials study. LA-UR-14–23402. Los Alamos National Laboratory, USA, 2014
14 D I Poston. Predicted performance of the KRUSTY reactor. In: Proceedings NETS-2018, ANS, Las Vegas, NV, USA, 2018
15 M A Gibson, S R Oleson, D I Poston, P R McClure. NASA’s kilopower reactor development and the path to higher power missions. Technical Report, NASA, USA, NASA/TM—2017–219467, 2017
16 S H Zare, A R Tavakolpour-Saleh. Free piston Stirling engines: a review. International Journal of Energy Research, 2019, 43(6): 1–32
17 D Gedeon. Sage User’s Guide, Stirling, Pulse-Tube and Low-T Cooler Model Classes.10th ed. Athens, OH: Gedeon Associates, 2014
18 Z Yan. Thermal Energy and Power Engineering Testing Technology. 2nd ed. Beijing: China Machine Press, 2005, 45–46 (in Chinese)
19 M A Gibson, L Mason, C Bowman. Development of NASA’s small fission power system for science and human exploration. In: 12th International Energy Conversion Engineering Conference, Cleveland, USA, 2014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed