Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

   优先出版

合作单位

2010年, 第4卷 第4期 出版日期:2010-12-05

选择: 合并摘要 显示/隐藏图片
REVIEW ARTICLE
Anion-exchange membrane direct ethanol fuel cells: Status and perspective
T.S. Zhao, Y.S. Li, S.Y. Shen
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 443-458.  
https://doi.org/10.1007/s11708-010-0127-5

摘要   HTML   PDF (526KB)

Direct ethanol fuel cells (DEFCs) are a promising carbon-neutral and sustainable power source for portable, mobile, and stationary applications. However, conventional DEFCs that use acid proton-exchange membranes (typically Nafion type) and platinum-based catalysts exhibit low performance (i.e., the state-of-the-art peak power density is 79.5 mW/cm2 at 90°C). Anion-exchange membrane (AEM) DEFCs that use low-cost AEM and non-platinum catalysts have recently been demonstrated to yield a much better performance (i.e., the state-of-the-art peak power density is 160 mW/cm2 at 80°C). This paper provides a comprehensive review of past research on the development of AEM DEFCs, including the aspects of catalysts, AEMs, and single-cell design and performance. Current and future research challenges are identified along with potential strategies to overcome them.

图表 | 参考文献 | 相关文章 | 多维度评价
RESEARCH ARTICLE
Scenario analysis of the energy demand and CO2 emission reduction potential of the urban transport system of Beijing through 2030
Jihong ZHANG, Jian ZHOU, Guangping HU, Tianhou ZHANG
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 459-468.  
https://doi.org/10.1007/s11708-010-0119-5

摘要   HTML   PDF (377KB)

An assessment of the energy demand and the potential for sector-based emission reductions will provide necessary background information for policy makers. In this paper, Beijing was selected as a special case for analysis in order to assess the energy demand and potential of CO2 abatement in the urban transport system of China. A mathematical model was developed to generate three scenarios for the urban transport system of Beijing from 2010 to 2030. The best pattern was identified by comparing the three different scenarios and assessing their urban traffic patterns through cost information. Results show that in the high motorization-oriented pattern scenario, total energy demand is about 13.94% higher, and the average CO2 abatement per year is 3.38 million tons less than in the reference scenario. On the other hand, in the bus and rail transit-oriented scenario, total energy demand is about 11.57% less, and the average CO2 abatement is 2.8 million tons more than in the reference scenario. Thus, Beijing cannot and should not follow the American pattern of high motorization-oriented transport system but learn from the experience of developed cities of Europe and East Asia.

图表 | 参考文献 | 相关文章 | 多维度评价
Combined heat and power plant integrated with mobilized thermal energy storage (M-TES) system
Weilong WANG, Yukun HU, Jinyue YAN, Jenny NYSTR?M, Erik DAHLQUIST
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 469-474.  
https://doi.org/10.1007/s11708-010-0123-9

摘要   HTML   PDF (175KB)

Energy consumption for space and tap water heating in residential and service sectors accounts for one third of the total energy utilization in Sweden. District heating (DH) is used to supply heat to areas with high energy demand. However, there are still detached houses and sparse areas that are not connected to a DH network. In such areas, electrical heating or oil/pellet boilers are used to meet the heat demand. Extending the existing DH network to those spare areas is not economically feasible because of the small heat demand and the large investment required for the expansion. The mobilized thermal energy storage (M-TES) system is an alternative source of heat for detached buildings or sparse areas using industrial heat. In this paper, the integration of a combined heat and power (CHP) plant and an M-TES system is analyzed. Furthermore, the impacts of four options of the integrated system are discussed, including the power and heat output in the CHP plant. The performance of the M-TES system is likewise discussed.

参考文献 | 相关文章 | 多维度评价
Experimental investigations of frost release by hydrophilic surfaces
Zhongliang LIU, Lingyan HUANG, Yujun GOU, Yaomin LIU
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 475-487.  
https://doi.org/10.1007/s11708-010-0114-x

摘要   HTML   PDF (607KB)

Frost formation occurs when water vapor in the surrounding air comes into contact with cold surfaces through heat and mass transfer. It is usually an undesirable phenomenon in most refrigeration and cryogenic systems. A few studies have shown that changing the surface energy, such as increasing the surface hydrophilicity or hydrophobicity, has significant effects on frost growth. In this paper, a kind of hydrophilic polymer paint is formulated to counteract frost deposition on cold surfaces. The coated surface can retard frost formation up to three hours under low plate temperatures (-15.3°C) and high air humidity (72%). To test the antifrosting performance of the hydrophilic paint under more practical conditions, it is applied to a fin-and-tube heat exchanger and a domestic refrigerator at a coating thickness of 30 μm. Comparisons of frost deposition, pressure drops, and outlet temperatures are made between uncoated and coated heat exchangers. Under conditions of high air temperature (2.2°C) and relative high air humidity (90%), the paint prolongs the defrosting interval from 80 to 137 min. Experimental observations also show that the coated hydrophilic fins are free of frost deposition during the entire course of the test and that the coating has no significant additional thermal resistance.

图表 | 参考文献 | 相关文章 | 多维度评价
Numerical simulation and experiment research of radiation performance in a dish solar collector system
Yong SHUAI, Xinlin XIA, Heping TAN
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 488-495.  
https://doi.org/10.1007/s11708-010-0007-z

摘要   HTML   PDF (478KB)

The Monte Carlo ray-tracing method is applied and coupled with optical properties to predict the radiation performance of solar concentrator/cavity receiver systems. Several different cavity geometries are compared on the radiation performance. A flux density distribution measurement system for dish parabolic concentrators is developed. The contours of the flux distribution for target placements at different distances from the dish vertex of a solar concentrator are taken by using an indirect method with a Lambert and a charge coupled device (CCD) camera. Further, the measured flux distributions are compared with a Monte Carlo-predicted distribution. The results can be a valuable reference for the design and assemblage of the solar collector system.

图表 | 参考文献 | 相关文章 | 多维度评价
A way to explain the thermal boundary effects on laminar convection through a square duct
Liangbi WANG, Xiaoping GAI, Kun HUANG, Yongheng ZHANG, Xiang YANG, Xiang WU
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 496-506.  
https://doi.org/10.1007/s11708-010-0020-2

摘要   HTML   PDF (771KB)

A way using the reformulation of the energy conservation equation in terms of heat flux to explain the thermal boundary effects on laminar convective heat transfer through a square duct is presented. For a laminar convection through a square duct, it explains that on the wall surface, the velocity is zero, but convection occurs for uniform wall heat flux (UWHF) boundary in the developing region due to the velocity gradient term; for uniform wall temperature (UWT) boundary, only diffusion process occurs on the wall surface because both velocity and velocity gradient do not contribute to convection; for UWHF, the largest term of the gradient of velocity components (the main flow velocity) on the wall surface takes a role in the convection of the heat flux normal to the wall surface, and this role exists in the fully developed region. Therefore, a stronger convection process occurs for UWHF than for UWT on the wall surface. The thermal boundary effects on the laminar convection inside the flow are also detailed.

参考文献 | 相关文章 | 多维度评价
An autonomous system for thermal convection of viscoelastic fluids in a porous layer using a thermal nonequilibrium model
Qi WEI, Xiaohui ZHANG
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 507-516.  
https://doi.org/10.1007/s11708-010-0017-x

摘要   HTML   PDF (701KB)

Thermal convection of viscoelastic fluids saturating a horizontal porous layer heated from below is analyzed using a thermal nonequilibrium model to take account of the interphase heat transfer between the fluid and the solid. The viscoelastic character of the flow is considered by a modified Darcy’s law. An autonomous system with five differential equations is deduced by applying the truncated Galerkin expansion to the momentum and heat transfer equations. The effects of interphase heat transfer H on the thermal convection of viscoelastic fluids in a porous medium are analyzed and discussed. The results show that the weak interphase heat transfer tends to stabilize the steady convection.

图表 | 参考文献 | 相关文章 | 多维度评价
Effect of thermodynamic parameters on the performance of refrigerator-ejector
Lihong CAO, Yicai LIU, Chao WAN, Tianlong XIN, Qian HUANG, Mingyan ZHANG
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 517-521.  
https://doi.org/10.1007/s11708-010-0004-2

摘要   HTML   PDF (175KB)

A 3D calculation model of a refrigerator-ejector was built and simulated in a compression/injection hybrid refrigeration cycle system by using the FLUENT software of CFD. The effect of thermodynamic parameters (the pressure of primary fluid and secondary fluid) on the performance of the refrigerator-ejector was studied. The boundary conditions were set according to the actual operating condition and the parameters of refrigerator experimental sample. The numerical calculation results show that there is one optimal pressure of primary fluid, i.e., ppopt = 0.06612 MPa, corresponding to the maximum entrainment ratio, i.e., u = 0.568; and there is one optimal pressure of secondary fluid, i.e., phopt = 0.04837 MPa, corresponding to the maximum entrainment ratio, i.e., u = 0.564.

图表 | 参考文献 | 相关文章 | 多维度评价
Simulation of the optimal heat rejection pressure for transcritical CO2 expander cycle
Junlan YANG, Yitai MA, Minxia LI, Hua TIAN
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 522-526.  
https://doi.org/10.1007/s11708-010-0027-8

摘要   HTML   PDF (186KB)

In order to optimize and control transcritical CO2 refrigeration cycle, a mathematical model was developed to simulate the system performance. The simulation results show that a maximum COP exists at the optimal heat rejection pressure not only for throttle valve cycle but also for expander cycle. Also, the optimal heat rejection pressures of the throttle valve cycle are greater than those of the expander cycle under the same condition. In order to further obtain correlation of the optimal heat rejection pressure for transcritical CO2 expander cycle, it is necessary to analyze the impact degree of compressor efficiency, expander efficiency, gas cooler outlet temperature and evaporation temperature. Based on the simulation results, the values of the optimal heat rejection pressure for the expander cycle were regressed in terms of gas cooler outlet temperature and evaporation temperature at given compressor efficiency and expander efficiency. Finally, two types of polynomial correlations were obtained. One is cubic form, with an average deviation of less than 0.5% and the other is simplified form, with an average deviation of less than 1%. It is, therefore, convenient to use either correlation to simulate the performance of transcritical CO2 expander cycle.

图表 | 参考文献 | 相关文章 | 多维度评价
Experimental study on saturated flow boiling heat transfer of R290/R152a binary mixtures in a horizontal tube
Xin ZOU, Maoqiong GONG, Gaofei CHEN, Zhaohu SUN, Jianfeng WU
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 527-534.  
https://doi.org/10.1007/s11708-010-0109-7

摘要   HTML   PDF (402KB)

An experimental study on the saturated flow boiling heat transfer for a binary mixture of R290/R152a at various compositions is conducted at pressures ranging from 0.2 to 0.4 MPa. The heat transfer coefficients are experimentally measured over mass fluxes ranging from 74.1 to 146.5 kg/(m2·s) and heat fluxes ranging from 13.1 to 65.5 kW/m2. The influences of different parameters such as quality, saturation pressure, heat flux, and mass flux on the local heat transfer coefficient are discussed. Existing correlations are analyzed. The Gungor-Winterton correlation shows the best fit among experimental data for the two pure refrigerants. A modified correlation for the binary mixture is proposed based on the authors’ previous work on pool boiling heat transfer and the database obtained from this study. The result shows that the total mean deviation is 10.41% for R290/R152a mixtures, with 97.6% of the predictions falling within±30%.

参考文献 | 相关文章 | 多维度评价
Predictor-corrector algorithm for solving quasi-separated-flow and transient distributed-parameter model for heat exchangers
Ping ZHANG, Guoliang DING
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 535-541.  
https://doi.org/10.1007/s11708-010-0113-y

摘要   HTML   PDF (228KB)

The successive sub?stitution (SS) method is a suitable approach to solving the transient distributed-parameter model for heat exchangers. However, this method must be enhanced because its convergence heavily depends on the iterative initial pressure. When the iterative initial pressure is improperly assigned, the calculated flow rates become negative values, causing the state parameters to exhibit negative values as well. Therefore, a predictor-corrector algorithm (PCA) is proposed to improve the convergence of the SS method. A predictor is developed to determine an appropriate iterative initial pressure. Total fluid mass is adopted as the convergence criterion of pressure iteration instead of outlet flow rate as is done in the SS method. Convergence analysis and case study of the PCA and SS method are conducted, which show that the PCA has better convergence than the SS method under the same working conditions.

参考文献 | 相关文章 | 多维度评价
Theoretical study of vibrating effect on heat transfer in laminar flow
Baoxing LI, Maocheng TIAN, Xueli LENG, Zheng ZHANG, Bo JIANG
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 542-545.  
https://doi.org/10.1007/s11708-010-0026-9

摘要   HTML   PDF (165KB)

Green’s function method was adopted to study the problem of vibrating effect on heat transfer in laminar flow with constant flux and the influence of Prandtl number and the vibrating frequency on the heat transfer characteristics was investigated. The results show that the variation of the frequency leads to a different distribution of the unsteady velocity and temperature; with a lower frequency, the vibrating will weaken the heat transfer, but the heat transfer will be enhanced with a higher frequency. A lower Prandtl number leads to a strenuous variation of heat transfer.

参考文献 | 相关文章 | 多维度评价
Convective heat transfer in helical coils for constant-property and variable-property flows with high Reynolds numbers
Yufei MAO, Liejin GUO, Bofeng BAI, Ximin ZHANG
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 546-552.  
https://doi.org/10.1007/s11708-010-0116-8

摘要   HTML   PDF (544KB)

Forced convection heat transfer of single-phase water in helical coils was experimentally studied. The testing section was constructed from a stainless steel round tube with an inner diameter of 10 mm, coil diameter of 300 mm, and pitch of 50 mm. The experiments were conducted over a wide Reynolds number range of 40000 to 500000. Both constant-property flows at normal pressure and variable-property flows at supercritical pressure were investigated. The contribution of secondary flow in the helical coil to heat transfer was gradually suppressed with increasing Reynolds number. Hence, heat transfer coefficients of the helical tube were close to those of the straight tube under the same flow conditions when the Reynolds number is large enough. Based on the experimental data, heat transfer correlations for both incompressible flows and supercritical fluid flows through helical coils were proposed.

参考文献 | 相关文章 | 多维度评价
Modeling and simulation analysis on parallel hybrid air-fuel vehicle
Pinglu CHEN, Xiaoli YU, Xianghong NIE, Yidong FANG
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 553-559.  
https://doi.org/10.1007/s11708-010-0008-y

摘要   HTML   PDF (420KB)

Based on the vehicle simulation software ADVISOR, the model of a parallel air-fuel hybrid vehicle was established, and the modeling of an air powered engine (APE), heat exchanger, braking air tank and control strategy were discussed in detail. Using the vehicle model, a hybrid vehicle refitted from a traditional diesel car was analyzed. The results show that for the New European Driving Cycle (NEDC), the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Test (HWFET) driving cycle, the total reductions in fossil fuel consumption of the hybrid vehicle were 48.29%, 48.51% and 22.07%, respectively, and the emissions could be decreased greatly compared with the traditional diesel car, while the compressed air consumptions of the hybrid vehicle were 97.366, 85.292 and 56.358 kg/100 km, respectively. Using the diesel equivalent as the indicator of fuel economy, the hybrid vehicle could improve the fuel economy by 14.71% and 16.75% for the NEDC and the UDDS driving cycles and decrease by 5.04% for the HWFET driving cycle compared with the traditional car. The simulation model and analysis in this paper could act as the theoretical basis and research platform in optimizing the key components and control strategy of hybrid air-fuel vehicles.

图表 | 参考文献 | 相关文章 | 多维度评价
Optimization of power and efficiency for an irreversible Diesel heat engine
Shiyan ZHENG, Guoxing LIN
Frontiers of Energy and Power Engineering in China. 2010, 4 (4): 560-565.  
https://doi.org/10.1007/s11708-010-0018-9

摘要   HTML   PDF (243KB)

A cyclic model of an irreversible Diesel heat engine is presented, in which the heat loss between the working fluid and the ambient during combustion, the irreversibility inside the cyclic working fluid resulting from friction, eddies flow, and other irreversible effects are taken into account. By using the thermodynamic analysis and optimal control theory methods, the analytical expressions of power output and efficiency of the Diesel heat engine are derived. Variations of the main performance parameters with the pressure ratio of the cycle are analyzed and calculated. The optimum operating region of the heat engine is determined. Moreover, the optimum criterion of some important parameters, such as the power output, efficiency, pressure ratio, and temperatures of the working fluid at the related state points are illustrated and discussed. The conclusions obtained in the present paper may provide some theoretical guidance for the optimal parameter design of a class of internal-combustion engines.

图表 | 参考文献 | 相关文章 | 多维度评价
15篇文章