Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2019, Vol. 13 Issue (2) : 325-338    https://doi.org/10.1007/s11708-019-0618-y
REVIEW ARTICLE
A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack
Arunkumar JAYAKUMAR()
Mechanical Engineering Department, Auckland University of Technology, Auckland 1142, New Zealand; Department of Mechatronics Engineering, Chennai Institute of Technology, Chennai 600069, India
 Download: PDF(767 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.

Keywords PEM fuel cell      gas diffusion electrode(GDE)      gas diffusion layer(GDL)      membrane electrode assembly      durability      fuel cell catalyst     
Corresponding Author(s): Arunkumar JAYAKUMAR   
Online First Date: 24 April 2019    Issue Date: 04 July 2019
 Cite this article:   
Arunkumar JAYAKUMAR. A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack[J]. Front. Energy, 2019, 13(2): 325-338.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-019-0618-y
https://academic.hep.com.cn/fie/EN/Y2019/V13/I2/325
Fig.1  A plan of PEM fuel cell (single cell) indicating electron and proton transfer
Fig.2  Volcano plots showing the trends in oxygen reduction activity as a function of the oxygen binding energy
Fig.3  Functional plan of key GDE component and cross sectional view of GDE
Fig.4  Mechanisms of Pt degradation
Electrochemical degradation Mechanical degradation
Carbon oxidation Clamping pressure
Low relative humidity and high temperature Reactant flow (predominantly humidified)
High voltage accelerate carbon oxidation High temperature
Tab.1  Snapshot on GDL degradation factors
Cathode catalyst Net ECSA/(m2·g?1 Pt) Total degradation/%
Pt/Vulcan XC72 13.36 21.7
Pt/SiC 13.20 1.27
Pt/SiCTiC 12.98 6.08
Tab.2  Evolution of ECSA obtained from H2 desorption peak of cyclic voltammetry performed during the different protocol tests
Parameter Material/value References
keff/(W·(mK)?1) Graphite matrix/150.6 [105]
Carbon paper/1.6 [106,107]
Carbon fiber paper/1.3 [108]
Carbon paper/0.1 to 1.6 [109]
Toray carbon paper
1.8 ± 0.27 at 26oC
1.24 ± 0.19 at 73oC
[110]
Diffusion and CL
0.2 ± 0.1
[111]
Tab.3  Effective thermal conductivities of the GDL-review
1 A Jayakumar, A Chalmers, T T Lie. Review of prospects for adoption of fuel cell electric vehicles in New Zealand. IET Electrical Systems in Transportation, 2017, 7(4): 259–266
https://doi.org/10.1049/iet-est.2016.0078
2 A Jayakumar. An assessment on polymer electrolyte membrane fuel cell stack components. Applied Physical Chemistry with Multidisciplinary Approaches, 2018, 3: 23–49
https://doi.org/10.1201/9781315169415-2
3 M Ay, A Midilli, I Dincer. Exergetic performance analysis of a PEM fuel cell. International Journal of Energy Research, 2006, 30(5): 307–321
https://doi.org/10.1002/er.1150
4 G Sasikumar, A Muthumeenal, S S Pethaiah, N Nachiappan, R Balaji. Aqueous methanol eletrolysis using proton conducting membrane for hydrogen production. International Journal of Hydrogen Energy, 2008, 33(21): 5905–5910
https://doi.org/10.1016/j.ijhydene.2008.07.013
5 N V Long, C M Thi, M Nogami, M Ohtaki. Novel Pt and Pd based core-shell catalysts with critical new issues of heat treatment, stability and durability for proton exchange membrane fuel cells and direct methanol fuel cells. In: Czerwinski F, ed. Heat Treatment—Conventional and Novel Applications. InTech, 2012
6 J A Kumar, P Kalyani, R Saravanan. Studies on PEM fuel cells using various alcohols for low power applications. International Journal of Electrochemical Science, 2008, 3: 961
7 O T Holton, J W Stevenson. The role of platinum in proton exchange membrane fuel cells. Platinum Metals Review, 2013, 57(4): 259–271
https://doi.org/10.1595/147106713X671222
8 B Wu, M Zhao, W Shi, W Liu, J Liu, D Xing, Y Yao, Z Hou, P Ming, J Gu, Z Zou. The degradation study of Nafion/PTFE composite membrane in PEM fuel cell under accelerated stress tests. International Journal of Hydrogen Energy, 2014, 39(26): 14381–14390
https://doi.org/10.1016/j.ijhydene.2014.02.142
9 S Subianto, M Pica, M Casciola, P Cojocaru, L Merlo, G Hards, D J Jones. Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells. Journal of Power Sources, 2013, 233: 216–230
https://doi.org/10.1016/j.jpowsour.2012.12.121
10 A Kusoglu, A Z Weber. Mechanical aspects of membrane durability in PEM fuel cells. In: ECS Meeting Abstracts, 2014, 18: 799
11 W Liu, K Ruth, G Rusch. The membrane durability in PEM fuel cells. Journal of New Materials for Electrochemical Systems, 2001, 4(4): 227–232
12 X Huang, R Solasi, Y U Zou, M Feshler, K Reifsnider, D Condit, S Burlatsky, T Madden. Mechanical endurance of polymer electrolyte membrane and PEM fuel cell durability. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(16): 2346–2357
https://doi.org/10.1002/polb.20863
13 T Kinumoto, K Nagano, Y Yamamoto, T Tsumura, M Toyoda. Anticorrosion properties of tin oxide coatings for carbonaceous bipolar plates of proton exchange membrane fuel cells. Journal of Power Sources, 2014, 249: 503–508
https://doi.org/10.1016/j.jpowsour.2013.10.065
14 H Tawfik, Y Hung, D Mahajan. Metal bipolar plates for PEM fuel cell—a review. Journal of Power Sources, 2007, 163(2): 755–767
https://doi.org/10.1016/j.jpowsour.2006.09.088
15 R A Antunes, M C Oliveira, G Ett, V Ett. Corrosion of metal bipolar plates for PEM fuel cells: a review. International Journal of Hydrogen Energy, 2010, 35(8): 3632–3647
https://doi.org/10.1016/j.ijhydene.2010.01.059
16 G S Kumar, M Raja, S Parthasarathy. High performance electrodes with very low platinum loading for polymer electrolyte fuel cells. Electrochimica Acta, 1995, 40(3): 285–290
https://doi.org/10.1016/0013-4686(94)00270-B
17 G Sasikumar, J W Ihm, H Ryu. Optimum Nafion content in PEM fuel cell electrodes. Electrochimica Acta, 2004, 50(2–3): 601–605
https://doi.org/10.1016/j.electacta.2004.01.126
18 E Reddington, A Sapienza, B Gurau, R Viswanathan, S Sarangapani, E Smotkin S, T E Mallouk . Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280(5370): 1735–1737
https://doi.org/10.1126/science.280.5370.1735
19 R Narayanan, M A El-Sayed. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Letters, 2004, 4(7): 1343–1348
https://doi.org/10.1021/nl0495256
20 J K Nørskov, T Bligaard, A Logadottir, S Bahn, L B Hansen, M Bollinger, H Bengaard, B Hammer, Z Sljivancanin, M Mavrikakis, Y Xu, S Dahl, C J H Jacobsen. Universality in heterogeneous catalysis. Journal of Catalysis, 2002, 209(2): 275–278
https://doi.org/10.1006/jcat.2002.3615
21 Wikipedia. Sabatier principle. 2018
22 H A Gasteiger, W Gu, R Makharia, M F Mathias, B Sompalli. Beginning-of-life MEA performance—efficiency loss contributions. In: Vielstich W, Lamm A, Gasteiger H A, Yokokawa H, eds. Handbook of Fuel Cells. John Wiley & Sons, 2010
23 S Park, J W Lee, B N Popov. A review of gas diffusion layer in PEM fuel cells: materials and designs. International Journal of Hydrogen Energy, 2012, 37(7): 5850–5865
https://doi.org/10.1016/j.ijhydene.2011.12.148
24 A Jayakumar, S P Sethu, M Ramos, J Robertson, A Al-Jumaily. A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics, 2015, 21(1): 1–8
https://doi.org/10.1007/s11581-014-1322-x
25 A Öztürk, B Fıçıcılar, İ Eroğlu, A Bayrakçeken Yurtcan. Facilitation of water management in low Pt loaded PEM fuel cell by creating hydrophobic microporous layer with PTFE, FEP and PDMS polymers: effect of polymer and carbon amounts. International Journal of Hydrogen Energy, 2017, 42(33): 21226–21249
https://doi.org/10.1016/j.ijhydene.2017.06.202
26 X Xie, R Wang, K Jiao, G Zhang, J Zhou, Q Du. Investigation of the effect of micro-porous layer on PEM fuel cell cold start operation. Renewable Energy, 2018, 117: 125–134
https://doi.org/10.1016/j.renene.2017.10.039
27 C Simon, D Kartouzian, D Müller, F Wilhelm, H A Gasteiger. Impact of microporous layer pore properties on liquid water transport in PEM fuel cells: carbon black type and perforation. Journal of the Electrochemical Society, 2017, 164(14): F1697–F1711
https://doi.org/10.1149/2.1321714jes
28 G Velayutham, J Kaushik, N Rajalakshmi, K S Dhathathreyan. Effect of PTFE content in gas diffusion media and microlayer on the performance of PEMFC tested, ambient pressure. Fuel Cells (Weinheim), 2007, 7(4): 314–318
https://doi.org/10.1002/fuce.200600032
29 L Cindrella, A M Kannan, J F Lin, K Saminathan, Y Ho, C W Lin, J Wertz. Gas diffusion layer for proton exchange membrane fuel cells—a review. Journal of Power Sources, 2009, 194(1): 146–160
https://doi.org/10.1016/j.jpowsour.2009.04.005
30 G J Janssen, M L Overvelde. Water transport in the proton-exchange-membrane fuel cell: measurements of the effective drag coefficient. Journal of Power Sources, 2001, 101(1): 117–125
https://doi.org/10.1016/S0378-7753(01)00708-X
31 J Lobato, P Cañizares, M A Rodrigo, D Úbeda, F J Pinar, J J Linares. Optimisation of the microporous layer for a polybenzimidazole-based high temperature PEMFC–effect of carbon content. Fuel Cells (Weinheim), 2010, 10(5): 770–777
https://doi.org/10.1002/fuce.200900175
32 V Paganin, E Ticianelli, E R Gonzalez. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 1996, 26(3): 297–304
https://doi.org/10.1007/BF00242099
33 H K Lee, J H Park, D Y Kim, T H Lee. A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC. Journal of Power Sources, 2004, 131(1–2): 200–206
https://doi.org/10.1016/j.jpowsour.2003.12.039
34 N Rajalakshmi, G Velayutham, K Ramya, C K Subramaniyam, K S Dhathathreyan . Characterisation and optimisation of low cost activated carbon fabric as a substrate layer for PEMFC electrodes. In: ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology, Ypsilanti, Michigan, USA, 2005, 169–173
35 L Giorgi, E Antolini, A Pozio, E Passalacqua. Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochimica Acta, 1998, 43(24): 3675–3680
https://doi.org/10.1016/S0013-4686(98)00125-X
36 B Thoben, A Siebke. Influence of different gas diffusion layers on the water management of the PEFC cathode. Journal of New Materials for Electrochemical Systems, 2004, 7(1): 13–20
37 I Staffell, R Green. How does wind farm performance decline with age? Renewable Energy, 2014, 66: 775–786
https://doi.org/10.1016/j.renene.2013.10.041
38 T Tian, J Tang, W Guo, M Pan. Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell. Frontiers in Energy, 2017, 11(3): 326–333
https://doi.org/10.1007/s11708-017-0489-z
39 D Wilkinson, A Steck. General progress in the research of solid polymer fuel cell technology at Ballard. In: International Symposium on New Materials for Fuel Cells and Modern Battery Systems, Montreal, Canada, 1997, 6–10
40 F N Büchi, M Inaba, T J Schmidt, eds. Polymer Electrolyte Fuel Cell Durability. New York: Springer, 2009
41 M K Debe. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486(7401): 43–51
https://doi.org/10.1038/nature11115
42 J H Lin, W H Chen, S H Su, Y J Su, T H Ko. Washing experiment of the gas diffusion layer in a proton-exchange membrane fuel cell. Energy & Fuels, 2008, 22(4): 2533–2538
https://doi.org/10.1021/ef800116c
43 C A Rice, P Urchaga, A O Pistono, B W McFerrin, B T McComb, J Hu. Platinum dissolution in fuel cell electrodes: enhanced degradation from surface area assessment in automotive accelerated stress tests. Journal of the Electrochemical Society, 2015, 162(10): F1175–F1180
https://doi.org/10.1149/2.0371510jes
44 R L Borup, J R Davey, F H Garzon, D L Wood, M A Inbody. PEM fuel cell electrocatalyst durability measurements. Journal of Power Sources, 2006, 163(1): 76–81
https://doi.org/10.1016/j.jpowsour.2006.03.009
45 D Úbeda, P Cañizares, M A Rodrigo, F J Pinar, J Lobato. Durability study of HT-PEMFC through current distribution measurements and the application of a model. International Journal of Hydrogen Energy, 2014, 39(36): 21678–21687
https://doi.org/10.1016/j.ijhydene.2014.06.045
46 D Villers, S H Sun, A M Serventi, J P Dodelet, S Désilets. Characterization of Pt nanoparticles deposited onto carbon nanotubes grown on carbon paper and evaluation of this electrode for the reduction of oxygen. Journal of Physical Chemistry B, 2006, 110(51): 25916–25925
https://doi.org/10.1021/jp065923g
47 S C Ball, S L Hudson, D Thompsett, B Theobald. An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures. Journal of Power Sources, 2007, 171(1): 18–25
https://doi.org/10.1016/j.jpowsour.2006.11.004
48 Y Shao, G Yin, Y Gao, P Shi. Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. Journal of the Electrochemical Society, 2006, 153(6): A1093–A1097
https://doi.org/10.1149/1.2191147
49 D Spernjak, J D Fairweather, T Rockward, R Mukundan, R Borup. Characterization of carbon corrosion in a segmented PEM fuel cell. ECS Transactions, 2011, 41(1): 741–750
50 J Zhang, ed. PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications. London: Springer Science & Business Media, 2008
51 Y Shao, G Yin, Y Gao. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. Journal of Power Sources, 2007, 171(2): 558–566
https://doi.org/10.1016/j.jpowsour.2007.07.004
52 Z Qi, S Buelte. Effect of open circuit voltage on performance and degradation of high temperature PBI–H3PO4 fuel cells. Journal of Power Sources, 2006, 161(2): 1126–1132
https://doi.org/10.1016/j.jpowsour.2006.06.020
53 Y Zhai, H Zhang, G Liu, J Hu, B Yi. Degradation study on MEA in H3PO4/PBI high-temperature PEMFC life test. Journal of the Electrochemical Society, 2007, 154(1): B72–B76
https://doi.org/10.1149/1.2372687
54 U Patrick, C A Rice. Ex-situ accelerated stress tests of Pt/C cathode catalysts. The importance of standard test procedures. In: 224th ECS Meeting Abstracts, 2013
55 W Sheng, S Chen, E Vescovo, Y Shao-Horn. Size influence on the oxygen reduction reaction activity and instability of supported Pt nanoparticles. Journal of the Electrochemical Society, 2011, 159(2): B96–B103
https://doi.org/10.1149/2.009202jes
56 J Huang, Z Li, J Zhang. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: the blessing and curse of ionomer. Frontiers in Energy, 2017, 11(3): 334–364
https://doi.org/10.1007/s11708-017-0490-6
57 Y Wang, C Y Wang, K S Chen. Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochimica Acta, 2007, 52(12): 3965–3975
https://doi.org/10.1016/j.electacta.2006.11.012
58 J Millichamp, T J Mason, T P Neville, N Rajalakshmi, R Jervis, P R Shearing, D J L Brett. Mechanisms and effects of mechanical compression and dimensional change in polymer electrolyte fuel cells–a review. Journal of Power Sources, 2015, 284: 305–320
https://doi.org/10.1016/j.jpowsour.2015.02.111
59 H Meng, C Y Wang. Electron transport in PEFCs. Journal of the Electrochemical Society, 2004, 151(3): A358–A367
https://doi.org/10.1149/1.1641036
60 S Zhang, X Yuan, H Wang, W Merida, H Zhu, J Shen, S Wu, J Zhang. A review of accelerated stress tests of MEA durability in PEM fuel cells. International Journal of Hydrogen Energy, 2009, 34(1): 388–404
https://doi.org/10.1016/j.ijhydene.2008.10.012
61 C Lee, W Mérida. Gas diffusion layer durability under steady-state and freezing conditions. Journal of Power Sources, 2007, 164(1): 141–153
https://doi.org/10.1016/j.jpowsour.2006.09.092
62 Y Wang, M Gundevia. Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers. International Journal of Heat and Mass Transfer, 2013, 60: 134–142
https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.016
63 J Wu, X Z Yuan, J J Martin, H Wang, J Zhang, J Shen, S Wu, W Merida. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. Journal of Power Sources, 2008, 184(1): 104–119
https://doi.org/10.1016/j.jpowsour.2008.06.006
64 G Chen, H Zhang, H Ma, H Zhong. Electrochemical durability of gas diffusion layer under simulated proton exchange membrane fuel cell conditions. International Journal of Hydrogen Energy, 2009, 34(19): 8185–8192
https://doi.org/10.1016/j.ijhydene.2009.07.085
65 R Borup, J Meyers, B Pivovar, Y S Kim, R Mukundan, N Garland, D Myers, M Wilson, F Garzon, D Wood, P Zelenay, K More, K Stroh, T Zawodzinski, J Boncella, J E McGrath, M Inaba, K Miyatake, M Hori, K Ota, Z Ogumi, S Miyata, A Nishikata, Z Siroma, Y Uchimoto, K Yasuda, K Kimijima, N Iwashita. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951
https://doi.org/10.1021/cr050182l
66 K Seidenberger, F Wilhelm, T Schmitt, W Lehnert, J Scholta. Estimation of water distribution and degradation mechanisms in polymer electrolyte membrane fuel cell gas diffusion layers using a 3D Monte Carlo model. Journal of Power Sources, 2011, 196(12): 5317–5324
https://doi.org/10.1016/j.jpowsour.2010.08.068
67 A Bazylak, D Sinton, Z S Liu, N Djilali. Effect of compression on liquid water transport and microstructure of PEMFC gas diffusion layers. Journal of Power Sources, 2007, 163(2): 784–792
https://doi.org/10.1016/j.jpowsour.2006.09.045
68 V Gurau, M J Bluemle, E S De Castro, Y M Tsou, T A Zawodzinski Jr, J A Mann Jr. Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 2. absolute permeability. Journal of Power Sources, 2007, 165(2): 793–802
https://doi.org/10.1016/j.jpowsour.2006.12.068
69 V Gurau, J A Mann. Effect of Interfacial phenomena at the gas diffusion layer-channel interface on the water evolution in a PEMFC. Journal of the Electrochemical Society, 2010, 157(4): B512–B521
https://doi.org/10.1149/1.3294708
70 V Gurau, T A Zawodzinski, J A Mann. Two-phase transport in PEM fuel cell cathodes. Journal of Fuel Cell Science and Technology, 2008, 5(2): 021009
https://doi.org/10.1115/1.2821597
71 C Hartnig, I Manke, R Kuhn, N Kardjilov, J Banhart, W Lehnert. Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells. Applied Physics Letters, 2008, 92(13): 134106
https://doi.org/10.1063/1.2907485
72 U Pasaogullari, C Y Wang. Two-phase modeling and flooding prediction of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2005, 152(2): A380–A390
https://doi.org/10.1149/1.1850339
73 H Meng, C Y Wang. Model of two-phase flow and flooding dynamics in polymerelectrolyte fuel cells. Journal of the Electrochemical Society, 2005, 152(9): A1733–A1741
https://doi.org/10.1149/1.1955007
74 U Pasaogullari, C Y Wang. Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2004, 151(3): A399–A406
https://doi.org/10.1149/1.1646148
75 S Sui, X Wang, X Zhou, Y Su, S Riffat, C J Liu. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(5): 1808–1825
https://doi.org/10.1039/C6TA08580F
76 K J Mayrhofer, B B Blizanac, M Arenz, V R Stamenkovic, P N Ross, N M Markovic. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. Journal of Physical Chemistry B, 2005, 109(30): 14433–14440
https://doi.org/10.1021/jp051735z
77 N De Zoubov, C Vanleugenhaghe, M Pourbaix. Atlas of Electrochemical Equilibria in Aqueous Solution. New York: Pergamon Press, 1966
78 K Kwon, Y Jung, H Ku, K Lee, S Kim, J Sohn, C Pak. CO-tolerant Pt–BeO as a novel anode electrocatalyst in proton exchange membrane fuel cells. Catalysts, 2016, 6(5): 68
https://doi.org/10.3390/catal6050068
79 A I Skoulidas, D M Ackerman, J K Johnson, D S Sholl. Rapid transport of gases in carbon nanotubes. Physical Review Letters, 2002, 89(18): 185901
https://doi.org/10.1103/PhysRevLett.89.185901
80 E Antolini. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009, 88(1–2): 1–24
https://doi.org/10.1016/j.apcatb.2008.09.030
81 J C Meier, C Galeano, I Katsounaros, J Witte, H J Bongard, A A Topalov, C Baldizzone, S Mezzavilla, F Schüth, K J J Mayrhofer. Design criteria for stable Pt/C fuel cell catalysts. Beilstein Journal of Nanotechnology, 2014, 5(1): 44–67
https://doi.org/10.3762/bjnano.5.5
82 P T Yu, W Gu, R Makharia, F T Wagnerc, H A Gasteigerc. The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation. ECS Transactions, 2006, 3(1): 797–809
83 R Kou, Y Shao, D Wang, M H Engelhard, J H Kwak, J Wang, V V Viswanathan, C Wang, Y Lin, Y Wang, I A Aksay, J Liu. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications, 2009, 11(5): 954–957
https://doi.org/10.1016/j.elecom.2009.02.033
84 Y Shao, J Liu, Y Wang, Y Lin. Novel catalyst support materials for PEM fuel cells: current status and future prospects. Journal of Materials Chemistry, 2009, 19(1): 46–59
https://doi.org/10.1039/B808370C
85 E Antolini, E R Gonzalez. Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics, 2009, 180(9–10): 746–763
https://doi.org/10.1016/j.ssi.2009.03.007
86 E Antolini, E R Gonzalez. Tungsten-based materials for fuel cell applications. Applied Catalysis B: Environmental, 2010, 96(3–4): 245–266
https://doi.org/10.1016/j.apcatb.2010.02.039
87 J B d’Arbigny, G Taillades, M Marrony, D J Jones, J Rozière. Hollow microspheres with a tungsten carbide kernel for PEMFC application. Chemical Communications, 2011, 47(28): 7950–7952
https://doi.org/10.1039/c1cc11422k
88 S Yin, S Mu, H Lv, N Cheng, M Pan, Z Fu. A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization. Applied Catalysis B: Environmental, 2010, 93(3–4): 233–240
https://doi.org/10.1016/j.apcatb.2009.09.034
89 Y C Kimmel, L Yang, T G Kelly, S A Rykov, J G Chen. Theoretical prediction and experimental verification of low loading of platinum on titanium carbide as low-cost and stable electrocatalysts. Journal of Catalysis, 2014, 312: 216–220
https://doi.org/10.1016/j.jcat.2014.02.002
90 D J You, X Jin, J H Kim, S A Jin, S Lee, K H Choi, W J Baek, C Pak, J M Kim. Development of stable electrochemical catalysts using ordered mesoporous carbon/silicon carbide nanocomposites. International Journal of Hydrogen Energy, 2015, 40(36): 12352–12361
https://doi.org/10.1016/j.ijhydene.2015.07.044
91 J Lobato, H Zamora, J Plaza, P Cañizares, M A Rodrigo. Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Applied Catalysis B: Environmental, 2016, 198: 516–524
https://doi.org/10.1016/j.apcatb.2016.06.011
92 I C Halalay, B Merzougui, M K Carpenter, S Swathirajan, C Gregory. G C Garabedian, A M Mance, M Cai. Supports for fuel cell catalyst. US Patent, 7622216B2, 2009
93 S T Oyama. Introduction to the chemistry of transition metal carbides and nitrides. In: Oyama S T, ed. The Chemistry of Transition Metal Carbides and Nitrides. Dordrecht: Springer, 1996, 1–27
94 S Sundar Pethaiah, G Paruthimal Kalaignan, M Ulaganathan, J Arunkumar . Preparation of durable nanocatalyzed MEA for PEM fuel cell applications. Ionics, 2011, 17(4): 361–366
95 S Sundar Pethaiah, G Paruthimal Kalaignan, G Sasikumar , M Ulaganathan. Evaluation of platinum catalyzed MEAs for PEM fuel cell applications. Solid State Ionics. 2011, 190(1): 88–92
96 S Sundar Pethaiah, G Paruthimal Kalaignan, G Sasikumar, M Ulaganathan, V Swaminathan. Development of nano-catalyzed membrane for PEM fuel cell applications. Journal of Solid State Electrochemistry, 2013, 17(11): 2917–2925
https://doi.org/10.1007/s10008-013-2211-3
97 J Lobato, H Zamora, J Plaza, M A Rodrigo. Composite titanium silicon carbide as a promising catalyst support for high-temperature proton-exchange membrane fuel cell electrodes. ChemCatChem, 2016, 8(4): 848–854
https://doi.org/10.1002/cctc.201501152
98 S D Knights, K M Colbow, J St-Pierre, D P Wilkinson. Aging mechanisms and lifetime of PEFC and DMFC. Journal of Power Sources, 2004, 127(1–2): 127–134
https://doi.org/10.1016/j.jpowsour.2003.09.033
99 N V Long, Y Yang, C M Thi, N V Minh, Y Q Cao, M Nogami. The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells. Nano Energy, 2013, 2(5): 636–676
https://doi.org/10.1016/j.nanoen.2013.06.001
100 A Jayakumar, M Ramos, A M Al-Jumaily. A novel 3D printing technique to synthesise gas diffusion layer for PEM fuel cell application. In: ASME 2016 International Mechanical Engineering Congress and Exposition, Phoenix, USA, 2016
101 A Jayakumar, S Singamneni, M Ramos, A Al-Jumaily, S Pethaiah. Manufacturing the gas diffusion layer for PEM fuel cell using a novel 3D printing technique and critical assessment of the challenges encountered. Materials (Basel), 2017, 10(7): 796
https://doi.org/10.3390/ma10070796
102 C Wang, S Wang, L Peng, J Zhang, Z Shao, J Huang, C Sun, M Ouyang, X He. Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications. Energies, 2016, 9(8): 603
https://doi.org/10.3390/en9080603
103 D L III Wood, R L Borup. Durability aspects of gas-diffusion and microporous layers. In: Büchi F N, Inaba M, Schmid T J, eds. Polymer Electrolyte Fuel Cell Durability. New York: Springer, 2009, 159–195
104 M Ahadi, M Tam, M S Saha, J Stumper, M Bahrami. Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: part 1–experimental study. Journal of Power Sources, 2017, 354: 207–214
https://doi.org/10.1016/j.jpowsour.2017.02.016
105 V Gurau, H Liu, S Kakac. Two-dimensional model for proton exchange membrane fuel cells. AIChE Journal., 1998, 44(11): 2410–2422
https://doi.org/10.1002/aic.690441109
106 N Djilali, D Lu. Influence of heat transfer on gas and water transport in fuel cells. International Journal of Thermal Sciences, 2002, 41(1): 29–40
https://doi.org/10.1016/S1290-0729(01)01301-1
107 A Rowe, X Li. Mathematical modeling of proton exchange membrane fuel cells. Journal of Power Sources, 2001, 102(1–2): 82–96
https://doi.org/10.1016/S0378-7753(01)00798-4
108 P T Nguyen, T Berning, N Djilali. Computational model of a PEM fuel cell with serpentine gas flow channels. Journal of Power Sources, 2004, 130(1–2): 149–157
https://doi.org/10.1016/j.jpowsour.2003.12.027
109 H Ju, H Meng, C Y Wang. A single-phase, non-isothermal model for PEM fuel cells. International Journal of Heat and Mass Transfer, 2005, 48(7): 1303–1315
https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.004
110 M Khandelwal, M M Mench. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. Journal of Power Sources, 2006, 161(2): 1106–1115
https://doi.org/10.1016/j.jpowsour.2006.06.092
111 P J Vie, S Kjelstrup. Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell. Electrochimica Acta, 2004, 49(7): 1069–1077
https://doi.org/10.1016/j.electacta.2003.10.018
112 J Ramousse, S Didierjean, O Lottin, D Maillet. Estimation of the effective thermal conductivity of carbon felts used as PEMFC gas diffusion Layers. International Journal of Thermal Sciences, 2008, 47(1): 1–6
https://doi.org/10.1016/j.ijthermalsci.2007.01.018
113 Y Lee, B Kim, Y Kim, X Li. Effects of a microporous layer on the performance degradation of proton exchange membrane fuel cells through repetitive freezing. Journal of Power Sources, 2011, 196(4): 1940–1947
https://doi.org/10.1016/j.jpowsour.2010.10.028
114 T Hottinen, M Mikkola, T Mennola, P Lund. Titanium sinter as gas diffusion backing in PEMFC. Journal of Power Sources, 2003, 118(1–2): 183–188
https://doi.org/10.1016/S0378-7753(03)00087-9
115 F Y Zhang, S G Advani, A K Prasad. Performance of a metallic gas diffusion layer for PEM fuel cells. Journal of Power Sources, 2008, 176(1): 293–298
https://doi.org/10.1016/j.jpowsour.2007.10.055
116 A M Trefilov, A Tiliakos, E C Serban, C Ceaus, S M Iordache, S Voinea, A Balan. Carbon xerogel as gas diffusion layer in PEM fuel cells. International Journal of Hydrogen Energy, 2017, 42(15): 10448–10454
https://doi.org/10.1016/j.ijhydene.2017.03.016
117 J M Morgan, R Datta. Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance. Journal of Power Sources, 2014, 251: 269–278
https://doi.org/10.1016/j.jpowsour.2013.09.090
118 J Lobato, H Zamora, J Plaza, P Cañizares, M A Rodrigo. Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Applied Catalysis B: Environmental, 2016, 198: 516–524
https://doi.org/10.1016/j.apcatb.2016.06.011
119 H Ito, Y Heo, M Ishida, A Nakano, S Someya, T Munakata. Application of a self-supporting microporous layer to gas diffusion layers of proton exchange membrane fuel cells. Journal of Power Sources, 2017, 342: 393–404
https://doi.org/10.1016/j.jpowsour.2016.12.064
120 D Schonvogel, M Rastedt, P Wagner, M Wark, A Dyck. Impact of accelerated stress tests on high temperature PEMFC degradation. Fuel Cells (Weinheim), 2016, 16(4): 480–489
https://doi.org/10.1002/fuce.201500160
121 Y Wang, K S Chen. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number. Journal of Power Sources, 2016, 315: 224–235
https://doi.org/10.1016/j.jpowsour.2016.03.045
122 G J Janssen. A phenomenological model of water transport in a proton exchange membrane fuel cell. Journal of the Electrochemical Society, 2001, 148(12): A1313–A1323
https://doi.org/10.1149/1.1415031
123 A Jayakumar, M Ramos, A Al-Jumaily. A novel fuzzy schema to control the temperature and humidification of PEM fuel cell system. In: ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum, San Diego, California, USA, 2015
124 R Saidur, S N Kazi, M S Hossain, M M Rahman, H A Mohammed. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renewable & Sustainable Energy Reviews, 2011, 15(1): 310–323
https://doi.org/10.1016/j.rser.2010.08.018
125 A Kocjan, M Logar, Z Shen. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Scientific Reports, 2017, 7(1): 2541
https://doi.org/10.1038/s41598-017-02760-7
126 J K Seo, A Khetan, M H Seo, H Kim, B Han. First-principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications. Journal of Power Sources, 2013, 238: 137–143
https://doi.org/10.1016/j.jpowsour.2013.03.077
127 G X Wang, L Yang, J Z Wang, H K Liu, S X Dou. Enhancement of ionic conductivity of PEO based polymer electrolyte by the addition of nanosize ceramic powders. Journal of Nanoscience and Nanotechnology, 2005, 5(7): 1135–1140
https://doi.org/10.1166/jnn.2005.165
128 S Martin, B Martinez-Vazquez, P L Garcia-Ybarra, J L Castillo. Peak utilization of catalyst with ultra-low Pt loaded PEM fuel cell electrodes prepared by the electrospray method. Journal of Power Sources, 2013, 229: 179–184
https://doi.org/10.1016/j.jpowsour.2012.12.029
129 B Martinez-Vazquez, D G Sanchez, J L Castillo, K A Friedrich, P L Garcia-Ybarra. Scaling-up and characterization of ultralow-loading MEAs made-up by electrospray. International Journal of Hydrogen Energy, 2015, 40(15): 5384–5389
https://doi.org/10.1016/j.ijhydene.2015.01.111
130 B C H Steele, A Heinzel. Materials for fuel-cell technologies. In: Dusastre V ed. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review. Nature Publishing Group, 2011, 224–231
131 R Singh, P C Sui, K H Wong, E Kjeang, S Knights, N Djilali. Modeling the effect of chemical membrane degradation on PEMFC performance. Journal of the Electrochemical Society, 2018, 165(6): F3328–F3336
https://doi.org/10.1149/2.0351806jes
132 J Zhang, B A Litteer, F D Coms, R Makharia. Recoverable performance loss due to membrane chemical degradation in PEM fuel cells. Journal of the Electrochemical Society, 2012, 159(7): F287–F293
https://doi.org/10.1149/2.063207jes
133 T Asset, R Chattot, F Maillard, L Dubau, Y Ahmad, N Batisse, M Dubois, K Guérin, F Labbé, R Metkemeijer, S Berthon-Fabry, M Chatenet. Activity and durability of platinum-based electrocatalysts supported on bare or fluorinated nanostructured carbon substrates. Journal of the Electrochemical Society, 2018, 165(6): F3346–F3358
https://doi.org/10.1149/2.031806jes
[1] Changlin ZHANG, Xiaochen SHEN, Yanbo PAN, Zhenmeng PENG. A review of Pt-based electrocatalysts for oxygen reduction reaction[J]. Front. Energy, 2017, 11(3): 268-285.
[2] Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG. Failure mode investigation of fuel cell for vehicle application[J]. Front. Energy, 2017, 11(3): 318-325.
[3] Tian TIAN, Jianjun TANG, Wei GUO, Mu PAN. Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell[J]. Front. Energy, 2017, 11(3): 326-333.
[4] R. CHEN,S. WANG,A. WENHAM,Z. SHI,T. YOUNG,J. JI,M. EDWARDS,A. SUGIANTO,L. MAI,S. WENHAM,C. CHONG. Plated contacts for solar cells with superior adhesion strength to screen printed solar cells[J]. Front. Energy, 2017, 11(1): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed