Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2019, Vol. 13 Issue (3) : 539-550    https://doi.org/10.1007/s11708-019-0635-x
RESEARCH ARTICLE
Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran
Mostafa REZAEI(), Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Mozhgan MOMENI
Industrial Engineering Department, Yazd University, Yazd 8915818411, Iran
 Download: PDF(450 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Due to acute problems caused by fossil fuels that threaten the environment, conducting research on other types of energy carriers that are clean and renewable is of great importance. Since in the past few years hydrogen has been introduced as the future fuel, the aim of this study is to evaluate wind and solar energy potentials in prone areas of Iran by the Weibull distribution function (WDF) and the Angstrom-Prescott (AP) equation for hydrogen production. To this end, the meteorological data of solar radiation and wind speed recorded at 10 m height in the time interval of 3 h in a five-year period have been used. The findings indicate that Manjil and Zahedan with yearly wind and solar energy densities of 6004 (kWh/m2) and 2247 (kWh/m2), respectively, have the greatest amount of energy among the other cities. After examining three different types of commercial wind turbines and photovoltaic (PV) systems, it becomes clear that by utilizing one set of Gamesa G47 turbine, 91 kg/d of hydrogen, which provides energy for 91 car/week, can be produced in Manjil and will save about 1347 L of gasoline in the week. Besides, by installing one thousand sets of X21-345 PV systems in Zahedan, 20 kg/d of hydrogen, enough for 20 cars per week, can be generated and 296 L of gasoline can be saved. Finally, the RETScreen software is used to calculate the annual CO2 emission reduction after replacing gasoline with the produced hydrogen.

Keywords wind energy      solar energy      water electrolysis      hydrogen production      Weibull distribution function (WDF)      Angstrom-Prescott (AP) equation     
Corresponding Author(s): Mostafa REZAEI   
Online First Date: 08 July 2019    Issue Date: 04 September 2019
 Cite this article:   
Mostafa REZAEI,Ali MOSTAFAEIPOUR,Mojtaba QOLIPOUR, et al. Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran[J]. Front. Energy, 2019, 13(3): 539-550.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-019-0635-x
https://academic.hep.com.cn/fie/EN/Y2019/V13/I3/539
City Longitude Latitude
Manjil 49°24′ E 36°44′ N
Zabol 61°29′ E 31°02′ N
Eghlid 52°38′ E 30°54′ N
Bushehr 50°49′ E 28°54′ N
Zahak 61°41′ E 30°54′ N
Zarrineh 46°55′ E 36°04′ N
Khoor 58°26′ E 32°56′ N
Noorabad 48°01′ E 34°03′ N
Ardebil 48°17′ E 38°15′ N
Binalood 59°22′ E 35°58′ N
Tab.1  Geographical characteristics of 10 cities with the highest mean wind speed between 2000 and 2014
City Longitude Latitude
Mehriz 54°28′E 31°35′N
Zarand 56°34′E 30°46′N
Zahedan 60°50′E 29°30′N
Kashan 51°40′E 33°28′N
Abadan 48°22′E 30°21′N
Lar 54°16′E 27°40′N
Saravan 62°20′E 15°22′N
Minab 57°02′E 24°05′N
Jiroft 57°44′E 28°21′N
Nikshahr 60°41′E 27°12′N
Tab.2  Geographical characteristics of 10 cities for evaluation solar energy
Month d/d ?δ
January 17 –20.9
February 47 –13
March 75 –2.4
April 105 9. 4
May 135 18.8
June 162 23.1
July 198 21.2
August 228 13.5
September 258 2.2
October 288 –9.6
November 318 –18.9
December 344 –23
Tab.3  Average days of each month and values of declination angle
Losses Minimal losses/% Largest losses/%
Inverter losses 7 15
Temperature losses 6 15
DC cables losses 1 3
AC cables losses 1 3
Shadings (depends of site) 25 40
Losses weak irradiation 4 7
Losses due to dust, snow and etc. 1 2
Sum of losses 45 85
Performance ratio (PR) 55 15
Tab.4  Worst-case scenario and the best conditions for losses of PV systems
Fig.1  The examined wind/solar to hydrogen energy conversion system (reprinted with permission from Ref. [25])
City Average wind speed/(m?s–1) k c Wind power density/(W? (m2?a)–1) Wind energy density/(kWh?(m2?a)–1)
Manjil 9.13 2.508 10.291 685.49 6004.892
Zabol 7.17 2.218 8.092 337.82 2959.303
Eghlid 6.39 2.098 7.216 225.76 1977.657
Bushehr 6.24 2.072 7.043 246.01 2155.047
Zahak 5.53 1.951 6.239 161.47 1414.477
Zarrineh 6.61 2.132 7.452 266.31 2322.864
Khoor 6.21 2.068 7.011 234.17 2051.360
Noorabad 5.66 1.975 6.385 176.08 1542.437
Ardebil 7.05 2.204 7.960 342.76 3002.574
Binalood 5.73 1.987 6.465 193.35 1693.749
Tab.5  Average values of k, c, and wind energy density at the height of 40 m
Wind turbine Swept area/m2 Rated power
/kW
Cut-in speed /(m?s–1) Rated speed /(m?s–1) Cut-out speed /(m?s–1)
AN BONUS 300 kW Mk III 876.16 300 3 13 25
NORDEX N 27 572.56 150 3 15.5 25
Gamesa G47 1734.94 660 4 15 25
Tab.6  Technical data of selected wind turbines at a hub height of 40 m
City AN BONUS 300 kW Mk III NORDEX N 27 Gamesa G47
Cf /% Eout/(MWh?a–1) CO2 reduction /(kg?a–1) H2/(kg?d–1) Cf/% Eout/(MWh?a–1) CO2 reduction /(kg?a–1) H2/(kg?d–1) Cf/% Eout/(MWh?a–1) CO2 reduction /(kg?a–1) H2/(kg?d–1)
Manjil 45 1182.6 921434.6 55.37 32.5 427.05 332740.3 20 33.7 1948.4 1518114.9 91.22
Zabol 30.5 801.54 624528.0 37.53 21.4 281.196 219096.6 13.17 21.3 1231.48 959520.6 57.66
Gamesa G47 25 657 511908.1 30.76 17.6 231.264 180191.6 10.83 17 982.87 765814.6 46.02
Bushehr 24 630.72 491431.6 29.53 16.9 222.066 173025.2 10.4 16.2 936.62 729776.2 43.85
Zahak 19.5 512.46 399288.2 24 13.8 181.332 141286.6 8.49 12.8 740.05 576613.3 34.65
Zarrineh 26.5 696.42 542622.4 32.61 18.6 244.4 190429.9 11.44 18.1 1046.47 815367.4 49
Khoor 23.8 625.46 487336.5 29.28 16.8 220.75 172000.9 10.34 16 925.06 720766.5 43.31
Noorabad 20.3 533.48 415832.3 24.98 14.4 189.22 147429.8 8.86 13.3 768.95 599137.3 36
Ardebil 29.6 777.89 606099.1 36.42 20.7 272 211930.2 12.74 20.5 1185.23 923482.2 55.49
Binalood 20.8 546.62 425907.4 25.59 14.7 193.16 150501.1 9.04 13.7 792.08 617156.3 37.08
Tab.7  Cf values and the amount of energy produced by the turbines, the reduction in annual CO2 emission, and hydrogen production
Fig.2  Hydrogen production (t/a) via the proposed system using wind turbines
City Population Cars Average gasoline consumed /(L?week–1) Hydrogen produced/(kg?d–1) Gasoline saved/(L?a–1) CO2 emission reduced/t
Manjil 126300 31575 467651.4 91.22 70222.15 163.9
Zabol 167732 41933 621061.7 57.66 43985.30 103.6
Eghlid 98188 24547 363561 46.02 35496.91 82.7
Bushehr 205322 51330 760246.3 43.85 33181.89 78.8
Zahak 85642 21410 317106.9 34.65 26236.85 62.3
Zarrineh 23250 5812.5 86087.84 49.00 37811.93 88.1
Khoor 178232 44558 659940.1 43.31 33181.89 77.8
Noorabad 368452 92113 1364268 36.00 27780.19 64.7
Ardebil 482632 120658 1787043 55.49 42441.96 99.7
Binalood 315274 78818 1167366 37.08 28551.86 66.6
Tab.8  Hydrogen production by installation of Gamesa G47 turbine, gasoline saved and annual CO2 emission reduced
City a b Average annual solar radiation energy
(MJ/m2) (kWh?(m2?a) –1)
Mehriz 0.345 0.398 7362.32 2046.636
Zarand 0.322 0.421 7601.20 2113.078
Zahedan 0.280 0.433 8083.14 2247.074
Kashan 0.361 0.35 7832.92 2177.296
Abadan 0.359 0.331 7463.47 2074.714
Lar 0.321 0.404 7780.45 2162.840
Saravan 0.275 0.430 7980.65 2218.440
Minab 0.340 0.306 7784.87 2163.952
Jiroft 0.322 0.421 7662.29 2130.116
Nikshahr 0.290 0.415 8012.56 2227.492
Tab.9  Values of a and b calculated in Ref. [44] and average annual radiation
Model X21-345 PS330P-24/T KD210GH-2PU
Manufacturer SunPower Phono Solar Kyocera
Module efficiency (or r in Eq. (18)) 21.16% 17.01% 14.40%
Type Mono crystalline Polycrystalline Polycrystalline
A/m2 1.63 1.94 1.48
Tab.10  Technical data of selected PV modules
City X21-345 PS330P-24/T KD210GH-2PU
Minimal losses Largest losses Minimal losses Largest losses Minimal losses Largest losses
Mehriz 388.25 105.89 371.46 101.31 239.90 65.43
Zarand 400.85 109.32 383.52 104.60 247.69 67.55
Zahedan 426.27 116.26 407.84 111.23 263.39 71.83
Kashan 413.03 112.65 395.17 107.77 255.21 69.60
Abadan 393.57 107.34 376.55 102.70 243.19 66.32
Lar 410.29 111.90 392.55 107.06 253.52 69.14
Saravan 420.84 114.77 402.64 109.81 260.04 70.92
Minab 410.50 111.95 392.75 107.11 253.65 69.18
Jiroft 404.08 110.20 386.61 105.44 249.68 68.10
Nikshahr 422.55 115.24 404.28 110.26 261.10 71.21
Tab.11  Amount of electricity (kWh/a) gained at output of PV systems considering 2 scenarios
Fig.3  Hydrogen production (t/a) via the system proposed by installing 1000 sets of the examined PV systems
City Population Cars Average gasoline consumed /(L?week –1) Hydrogen produced/(kg?d –1) Gasoline saved /(L?a –1) CO2 emission reduced/t
Mehriz 36442 9110 134941.3 18.18 14039.2 32.7
Zarand 66752 16688 247162.8 18.77 14494.9 33.7
Zahedan 670822 167705 2483862 19.96 15413.8 35.9
Kashan 308540 77135 1142432 19.34 14935.0 34.8
Abadan 232366 58091 860389.7 18.43 14232.3 33.1
Lar 68450 17112 253457.4 19.21 14834.6 34.5
Saravan 64800 16200 239935.1 19.70 15213.0 35.4
Minab 66322 16580 245578.1 19.22 14842.4 34.5
Jiroft 122036 30509 451863 18.92 14610.7 34.0
Nikshahr 19688 4922 72898.81 19.78 15274.8 35.5
Tab.12  Reduction in CO2 emission after using hydrogen produced as fuel for cars
1 Y Bicer, I Dincer. Clean fuel options with hydrogen for sea transportation: a life cycle approach. International Journal of Hydrogen Energy, 2018, 43(2): 1179–1193
https://doi.org/10.1016/j.ijhydene.2017.10.157
2 M Rezaei, M Salimi, M Momeni, A Mostafaeipour. Investigation of the socio-economic feasibility of installing wind turbines to produce hydrogen: case study. International Journal of Hydrogen Energy, 2018, 43(52): 23135–23147
https://doi.org/10.1016/j.ijhydene.2018.10.184
3 S Singh, S Jain, P S Venkateswaran, A K Tiwari, M R, Pandey J K, Goel S Nouni. Hydrogen: a sustainable fuel for future of the transport sector. Renewable & Sustainable Energy Reviews, 2015, 51: 623–633
https://doi.org/10.1016/j.rser.2015.06.040
4 A Noblecourt, G Christophe, C Larroche, P Fontanille. Hydrogen production by dark fermentation from pre-fermented depackaging food wastes. Bioresource Technology, 2018, 247: 864–870
https://doi.org/10.1016/j.biortech.2017.09.199
5 D Schweitzer, F G Albrecht, M Schmid, M Beirow, R Spörl, R Dietrich, A Seitz. Process simulation and techno-economic assessment of SER steam gasification for hydrogen production. International Journal of Hydrogen Energy, 2018, 43(2): 569–579
https://doi.org/10.1016/j.ijhydene.2017.11.001
6 M Aasadnia, M Mehrpooya. Large-scale liquid hydrogen production methods and approaches: a review. Applied Energy, 2018, 212: 57–83
https://doi.org/10.1016/j.apenergy.2017.12.033
7 B Dou, H Zhang, G Cui, Z Wang, B Jiang, K Wang, H Chen, Y Xu. Hydrogen production by sorption-enhanced chemical looping steam reforming of ethanol in an alternating fixed-bed reactor: sorbent to catalyst ratio dependencies. Energy Conversion and Management, 2018, 155: 243–252
https://doi.org/10.1016/j.enconman.2017.10.075
8 X Yan, X Zhang, C Gu, F Li. Power to gas: addressing renewable curtailment by converting to hydrogen. Frontiers in Energy, 2018, 12(4): 560–568
https://doi.org/10.1007/s11708-018-0588-5
9 H Hao, Z Mu, Z Liu, F Zhao. Abating transport GHG emissions by hydrogen fuel cell vehicles: chances for the developing world. Frontiers in Energy, 2018, 12(3): 466–480
https://doi.org/10.1007/s11708-018-0561-3
10 G Bekele, G Tadesse. Feasibility study of small hydro/PV/wind hybrid system for off-grid rural electrification in Ethiopia. Applied Energy, 2012, 97: 5–15
https://doi.org/10.1016/j.apenergy.2011.11.059
11 G Badea, G S Naghiu, I Giurca, I Aşchilean, E Megyesi. Hydrogen production using solar energy–technical analysis. Energy Procedia, 2017, 112: 418–425
https://doi.org/10.1016/j.egypro.2017.03.1097
12 C Likkasit, A Maroufmashat, A Elkamel, H Ku, M Fowler. Solar-aided hydrogen production methods for the integration of renewable energies into oil & gas industries. Energy Conversion and Management, 2018, 168: 395–406
https://doi.org/10.1016/j.enconman.2018.04.057
13 A Saadi, M Becherif, H S Ramadan. Hydrogen production horizon using solar energy in Biskra, Algeria. International Journal of Hydrogen Energy, 2016, 41(47): 21899–21912
https://doi.org/10.1016/j.ijhydene.2016.08.224
14 K Alrabie, M N Saidan. A preliminary solar-hydrogen system for Jordan: impacts assessment and scenarios analysis. International Journal of Hydrogen Energy, 2018, 43(19): 9211–9223
https://doi.org/10.1016/j.ijhydene.2018.03.218
15 A Haddad, M Ramadan, M Khaled, H Ramadan, M Becherif. Study of hybrid energy system coupling fuel cell, solar thermal system and photovoltaic cell. International Journal of Hydrogen Energy, 2018, in press
https://doi.org/10.1016/j.ijhydene.2018.06.019
16 J Assaf, B Shabani. Experimental study of a novel hybrid solar-thermal/PV-hydrogen system: towards 100% renewable heat and power supply to standalone applications. Energy, 2018, 157: 862–876
https://doi.org/10.1016/j.energy.2018.05.125
17 J G García Clúa, R J Mantz, H De Battista. Optimal sizing of a grid-assisted wind-hydrogen system. Energy Conversion and Management, 2018, 166: 402–408
https://doi.org/10.1016/j.enconman.2018.04.047
18 R Sarrias-Mena, L M Fernández-Ramírez, C A García-Vázquez, F Jurado. Electrolyzer models for hydrogen production from wind energy systems. International Journal of Hydrogen Energy, 2015, 40(7): 2927–2938
https://doi.org/10.1016/j.ijhydene.2014.12.125
19 M Douak, N Settou. Estimation of hydrogen production using wind energy in Algeria. Energy Procedia, 2015, 74: 981–990
https://doi.org/10.1016/j.egypro.2015.07.829
20 Y Kalinci, A Hepbasli, I Dincer. Techno-economic analysis of a stand-alone hybrid renewable energy system with hydrogen production and storage options. International Journal of Hydrogen Energy, 2015, 40(24): 7652–7664
https://doi.org/10.1016/j.ijhydene.2014.10.147
21 M Blal, A Belasri, A Benatillah, M Hamouda, S Lachtar, N Sahouane, S Laribi, M Mostefaoui. Assessment of solar and wind energy as motive for potential hydrogen production of Algeria country: development a methodology for uses hydrogen-based fuel cells. International Journal of Hydrogen Energy, 2018, 43(19): 9192–9210
https://doi.org/10.1016/j.ijhydene.2018.03.200
22 O V Marchenko, S V Solomin. Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal coast. International Journal of Hydrogen Energy, 2017, 42(15): 9361–9370
https://doi.org/10.1016/j.ijhydene.2017.02.076
23 A Al-Sharafi, A Z Sahin, T Ayar, B S Yilbas. Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renewable & Sustainable Energy Reviews, 2017, 69: 33–49
https://doi.org/10.1016/j.rser.2016.11.157
24 A Mostafaeipour, A Sedaghat, M Qolipour, M Rezaei, H R Arabnia, M, SaidiMehrabad S Shamshirband, O Alavi. Localization of solar-hydrogen power plants in the province of Kerman, Iran. Advances in Energy Research, 2017, 5(2): 179–205
25 M Rezaei-Shouroki, A Mostafaeipour, M Qolipour. Prioritizing of wind farm locations for hydrogen production: a case study. International Journal of Hydrogen Energy, 2017, 42(15): 9500–9510
https://doi.org/10.1016/j.ijhydene.2017.02.072
26 A Mostafaeipour, M Khayyami, A Sedaghat, K Mohammadi, S Shamshirband, M A Sehati, E Gorakifard. Evaluating the wind energy potential for hydrogen production: a case study. International Journal of Hydrogen Energy, 2016, 41(15): 6200–6210
https://doi.org/10.1016/j.ijhydene.2016.03.038
27 K Mohammadi, A Mostafaeipour. Economic feasibility of developing wind turbines in Aligoodarz, Iran. Energy Conversion and Management, 2013, 76: 645–653
https://doi.org/10.1016/j.enconman.2013.06.053
28 K Mohammadi, A Mostafaeipour, M Sabzpooshani. Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran. Energy, 2014, 67: 117–128
https://doi.org/10.1016/j.energy.2014.02.024
29 A Mostafaeipour, A Sedaghat, A A Dehghan-Niri, V Kalantar. Wind energy feasibility study for city of Shahrbabak in Iran. Renewable & Sustainable Energy Reviews, 2011, 15(6): 2545– 2556
https://doi.org/10.1016/j.rser.2011.02.030
30 M Rezaei, A Mostafaeipour, M Qolipour, R Tavakkoli-Moghaddam. Investigation of the optimal location design of a hybrid wind-solar plant: a case study. International Journal of Hydrogen Energy, 2018, 43(1): 100–114
https://doi.org/10.1016/j.ijhydene.2017.10.147
31 M Ramli, S Twaha, Z Al-Hamouz. Analyzing the potential and progress of distributed generation applications in Saudi Arabia: the case of solar and wind resources. Renewable & Sustainable Energy Reviews, 2017, 70: 287–297
https://doi.org/10.1016/j.rser.2016.11.204
32 M Li, L Fan, H Liu, W Wu, J Chen. Impact of time interval on the Ångström-Prescott coefficients and their interchangeability in estimating radiation. Renewable Energy, 2012, 44: 431–438
https://doi.org/10.1016/j.renene.2012.01.107
33 X Liu, Y Xu, X Zhong, W Zhang, J R Porter, W Liu. Assessing models for parameters of the Angstrom–Prescott formula in China. Applied Energy, 2012, 96: 327–338
https://doi.org/10.1016/j.apenergy.2011.12.083
34 P Nikolaidis, A Poullikkas. A comparative overview of hydrogen production processes. Renewable & Sustainable Energy Reviews, 2017, 67: 597–611
https://doi.org/10.1016/j.rser.2016.09.044
35 J A Duffie, W A Beckman. Solar Engineering of Thermal Processes. 3rd ed. New York: John Wiley & Sons, 2006
36 R Bhattacharyya, A Misra, K C Sandeep. Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: conceptual design and analysis. Energy Conversion and Management, 2017, 133: 1–13
https://doi.org/10.1016/j.enconman.2016.11.057
37 F Yilmaz, M T Balta, R Selbaş. A review of solar based hydrogen production methods. Renewable & Sustainable Energy Reviews, 2016, 56: 171–178
https://doi.org/10.1016/j.rser.2015.11.060
38 L Strupeit, A Palm. Overcoming barriers to renewable energy diffusion: business models for customer-sited solar photovoltaics in Japan, Germany and the United States. Journal of Cleaner Production, 2016, 123: 124–136
https://doi.org/10.1016/j.jclepro.2015.06.120
39 S Sharma, S K Ghoshal. Hydrogen the future transportation fuel: from production to applications. Renewable & Sustainable Energy Reviews, 2015, 43: 1151–1158
https://doi.org/10.1016/j.rser.2014.11.093
40 J Alazemi, A Andrews. Automotive hydrogen fuelling stations: an international review. Renewable & Sustainable Energy Reviews, 2015, 48: 483–499
https://doi.org/10.1016/j.rser.2015.03.085
41 K G dos Santos, C T Eckert, E De Rossi, R A Bariccatti, E P Frigo, C A Lindino, H J Alves. Hydrogen production in the electrolysis of water in Brazil: a review. Renewable & Sustainable Energy Reviews, 2017, 68: 563–571
https://doi.org/10.1016/j.rser.2016.09.128
42 M Rezaei, A Mostafaeipour, M Qolipour, H R Arabnia. Hydrogen production using wind energy from sea water: a case study on Southern and Northern coasts of Iran. Energy & Environment, 2018, 29(3): 333–357
https://doi.org/10.1177/0958305X17750052
43 J I Levene, M K Mann, R M Margolis, A Milbrandt. An analysis of hydrogen production from renewable electricity sources. Solar Energy, 2007, 81(6): 773–780
https://doi.org/10.1016/j.solener.2006.10.005
44 S Moeini, S Javadi, M Kokabi, M Dehghan-Manshadi. Evaluating solar radiation in Iran with using an optimum model. Journal of Energy in Iran, 2011, 13: 1–10
[1] Bin ZHAO, Xianze AO, Nuo CHEN, Qingdong XUAN, Mingke HU, Gang PEI. A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling[J]. Front. Energy, 2020, 14(4): 882-888.
[2] Honglun YANG, Qiliang WANG, Jingyu CAO, Gang PEI, Jing LI. Potential of performance improvement of concentrated solar power plants by optimizing the parabolic trough receiver[J]. Front. Energy, 2020, 14(4): 867-881.
[3] Hilal ÇELİK KAZICI, Şakir YILMAZ, Tekin ŞAHAN, Fikret YILDIZ, Ömer Faruk ER, Hilal KIVRAK. A comprehensive study of hydrogen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodology[J]. Front. Energy, 2020, 14(3): 578-589.
[4] Y. YU, Q. W. PAN, L. W. WANG. A small-scale silica gel-water adsorption system for domestic air conditioning and water heating by the recovery of solar energy[J]. Front. Energy, 2020, 14(2): 328-336.
[5] Ridha CHEIKH, Arezki MENACER, L. CHRIFI-ALAOUI, Said DRID. Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system[J]. Front. Energy, 2020, 14(1): 180-191.
[6] Jiahui JIN, Lei WANG, Mingkai FU, Xin LI, Yuanwei LU. Thermodynamic assessment of hydrogen production via solar thermochemical cycle based on MoO2/Mo by methane reduction[J]. Front. Energy, 2020, 14(1): 71-80.
[7] Ali EL YAAKOUBI, Kamal ATTARI, Adel ASSELMAN, Abdelouahed DJEBLI. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
[8] M. A. SALAM, M. G. YAZDANI, Q. M. RAHMAN, Dk NURUL, S. F. MEI, Syeed HASAN. Investigation of wind energy potentials in Brunei Darussalam[J]. Front. Energy, 2019, 13(4): 731-741.
[9] Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Hossein GOUDARZI. Feasibility of using wind turbines for renewable hydrogen production in Firuzkuh, Iran[J]. Front. Energy, 2019, 13(3): 494-505.
[10] Ravinder Kumar SAHDEV, Mahesh KUMAR, Ashwani Kumar DHINGRA. A comprehensive review of greenhouse shapes and its applications[J]. Front. Energy, 2019, 13(3): 427-438.
[11] Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI. Recent progress in MoS2 for solar energy conversion applications[J]. Front. Energy, 2019, 13(2): 251-268.
[12] Zhaorui ZHAO, Bao YANG, Ziwen XING. Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system[J]. Front. Energy, 2019, 13(1): 193-203.
[13] Ershuai YIN, Qiang LI, Yimin XUAN. Effect of non-uniform illumination on performance of solar thermoelectric generators[J]. Front. Energy, 2018, 12(2): 239-248.
[14] S. SURENDER REDDY,Jae Young PARK,Chan Mook JUNG. Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm[J]. Front. Energy, 2016, 10(3): 355-362.
[15] Deepak SANGROYA,Jogendra NAYAK. Effectiveness of state incentives for promoting wind energy: A panel data examination[J]. Front. Energy, 2015, 9(3): 247-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed