Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2019, Vol. 13 Issue (4) : 636-657    https://doi.org/10.1007/s11708-019-0646-7
RESEARCH ARTICLE
Performance and emission characteristics of a diesel engine operating on different water in diesel emulsion fuels: optimization using response surface methodology (RSM)
Seyed Saeed HOSEINI, Mohammad Amin SOBATI()
School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran 16765163, Iran
 Download: PDF(4899 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The nitrogen oxide (NOx) release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification. In the present paper, different formulations of water in diesel emulsion fuels were prepared by ultrasonic irradiation. The water droplet size in the emulsion, polydisperisty index, and the stability of prepared fuel was examined, experimentally. Afterwards, the performance characteristics and exhaust emission of a single cylinder air-cooled diesel engine were investigated using different water in diesel emulsion fuels. The effect of water content (in the range of 5%–10% by volume), surfactant content (in the range of 0.5%–2% by volume), and hydrophilic-lipophilic balance (HLB) (in the range of 5–8) was examined using Box-Behnken design (BBD) as a subset of response surface methodology (RSM). Considering multi-objective optimization, the best formulation for the emulsion fuel was found to be 5% water, 2% surfactant, and HLB of 6.8. A comparison was made between the best emulsion fuel and the neat diesel fuel for engine performance and emission characteristics. A considerable decrease in the nitrogen oxide emission (–18.24%) was observed for the best emulsion fuel compared to neat diesel fuel.

Keywords water in diesel emulsion fuel      hydrophilic-lipophilic balance (HLB)      response surface methodology (RSM)      emulsion stability      engine performance      exhaust emission     
Corresponding Author(s): Mohammad Amin SOBATI   
Online First Date: 11 December 2019    Issue Date: 26 December 2019
 Cite this article:   
Seyed Saeed HOSEINI,Mohammad Amin SOBATI. Performance and emission characteristics of a diesel engine operating on different water in diesel emulsion fuels: optimization using response surface methodology (RSM)[J]. Front. Energy, 2019, 13(4): 636-657.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-019-0646-7
https://academic.hep.com.cn/fie/EN/Y2019/V13/I4/636
Researcher’s Name Engine type and operating conditions Characteristics of fuel composition Surfactant
Type
HLB value Torque Brake power BSFC BTE CO HC CO2 NOx
Basha
et al. [10]
One cylinder, Engine speed=1500 r/min,
Engine load= 100 %
Water= 15% (vol), Surfactant= 2% (vol) Tween 80
and
Span 80
8 No information No information increase increase increase increase No information decrease
Seifi
et al. [1]
Six cylinders, Engine speed= 1400–1900 r/min,
Engine load= 25%–100%
Water= 2%–10% (vol), Surfactant= 2% (vol) Span 80 4.3 decrease decrease No information No
information
No
information
No
information
No
information
No
information
Bidita
et al. [8]
Engine speed= 2600 r/min, Engine load= 50% Water= 0.7%–1% (vol), Surfactant= 0.25%–0.4% (vol) Triton X-100 - No information No information No information No information increase No information decrease decrease
Alahmer
et al.[4]
Four cylinders,
Engine speed= 1000–3000 r/min,
Engine load= 100%
Water= 5%–30%(vol), Surfactant= 2% (vol) Tween 20 16.7 decrease decrease increase decrease No information No information increase decrease
Basha et al.
[25]
One cylinder, Engine speed= 1500 r/min, Engine load= 100% Water= 5% (vol), Surfactant= 2% (vol) Tween 80
and
Span 80
8 No information No information increase increase decrease increase No information decrease
Ithnin et al. [9] One cylinder, Engine speed= 3000 r/min, Engine load= 25%–100% Water=5%–20% (vol), Surfactant= 2% (vol) Span 80 4.3 No information No information No information No information increase No information No different decrease
Abu-Zaid [6] One cylinder, Engine speed= 1200–3300 r/min, Engine load= 100% Water= 5%–20% (vol), Surfactant= 2% (vol) Tween 80
and
Span 80
- increase increase decrease increase No
information
No
information
No
information
No
information
Tab.1  A summary of the performance and emission characteristics of water in diesel emulsion fuels
Properties Value Test type
Density at 15°C/(g·cm–3) 0.827 ASTM D 1298
Kinematic viscosity at 40°C/(mm2·s–1) 2.83 ASTM D 445
Cetane number 56.34 ASTM D 976
Net Calorific value/(MJ·kg–1) 46.42 ASTM D 4868
Flash point/°C 67 ASTM D 93
Cloud point/°C 1 ASTM D 97
Pour point/°C –6 ASTM D 2500
Water content/ppm 54 ASTM D 6304
Sulfur content/ppm 48 ASTM D 4294
Tab.2  Specifications of neat diesel fuel
Fig.1  Experimental set-up for ultrasound-assisted emulsification process for production of emulsion fuels.
Type Lombardini-Diesel 3LD510
Number of cylinder 1
Swept volume 510 cm3
Bore 85 mm
Stroke 90 mm
Compression ratio 17.5:1
Maximum torque at 1800 r/min 32.8 N·m
Maximum power at 3000 r/min 9 kW
Tab.3  Characteristics of applied diesel engine
Variables Measurement range Measurement accuracy
CO 0%–15% (vol) 0.02% (vol)
CO2 0%–20% (vol) 0.3% (vol)
HC 0–30000 ppm (vol) 4 ppm (vol)
NO 0–5000 ppm (vol) 5 ppm (vol)
Tab.4  Detailed properties of AVL DITEST GAS 1000 emission analyzer
Fig.2  Schematic of experimental set-up applied in engine test.
Independent parameters Range and levels
–1 0 + 1
x1: Percentage of water/%(vol) 5 7.5 10
x2: Percentage of surfactant/%(vol) 0.5 1.25 2
x3: HLB value 5 6.5 8
Tab.5  Experimental ranges and factor levels of variables applied in the experimental design
Run Coded values Real variables
x1 x2 x3 Percentage of water/%(vol) Percentage of surfactant/ %(vol) HLB value
1 0 0 0 7.5 1.25 6.5
2 +1 +1 0 10 2 6.5
3 0 +1 +1 7.5 2 8
4 –1 +1 0 5 2 6.5
5 +1 –1 0 10 0.5 6.5
6 –1 0 +1 5 1.25 8
7 0 –1 +1 7.5 0.5 8
8 0 0 0 7.5 1.25 6.5
9 +1 0 –1 10 1.25 5
10 0 0 0 7.5 1.25 6.5
11 0 +1 –1 7.5 2 5
12 0 –1 –1 7.5 0.5 5
13 0 0 0 7.5 1.25 6.5
14 –1 –1 0 5 0.5 6.5
15 +1 0 +1 10 1.25 8
16 –1 0 –1 5 1.25 5
17 0 0 0 7.5 1.25 6.5
Tab.6  Experimental runs suggested by BBD
Run Real variable Average droplet size/nm PDI Stability/h
x1 x2 x3
1 (The BBD most repeated) 7.5 1.25 6.5 503.4 0.413 168
4 (The highest stability) 5 2 6.5 373.5 0.266 216
15 (The lowest stability) 10 1.25 8 676.5 0.485 12
Tab.7  Stability analysis of emulsion fuel
Fig.3  Effect of emulsification time on stability of emulsion fuel for most repeated BBD experimental run.
Reference Emulsion fuel characteristic Surfactant type Emulsification time/ min Stability duration
Hasannuddin et al. [45] 20% water (vol)
1% surfactant (vol)
Span 80 5 75 min
Bidita et al. [8] 1% water (vol)
0.4% surfactant (vol)
Triton X-100 10 16 days
Ghannam et al.[46] 10% water (vol)
0.2% surfactant (vol)
Triton X-100 2 4 weeks
Patil et al. [43] 10% water (vol)
5% surfactant (vol)
Span 80 and tween 80 20 30 days
Noor El-Din et al. [44] 5% water (vol)
10% surfactant (vol)
Span 80 and tween 80 5 2 weeks
Tab.8  Reported values of emulsion fuel stability in various studies
The response Correlation
T YT[N ?m]=16.942+ 0.153 x1+ 0.355x2+ 0.784x3+1.333×10 3x1 x2+0.01x 1 x34.444 ×10 3x2 x30.023 x12 0.171 x22 0.063 x32
Pb Y Pb[kW]=3.146+0.033x1 + 0.062x2+ 0.169x3+4× 104 x1 x2+1.267 ×10 3x1 x3+9.713× 1017 x2 x3 4.344× 103x 12 0.031x2 2 0.013x3 2
BSFC YBSPC[g/ kW h]=421.578 18.325 x1 12.721x2 + 5.069x3+ 1.665 x1 x2 + 0.337x1x3+1.722 x2 x3 + 1.498 x12+ 1.336 x22 0.989 x32
BTE YBTE[% ]=6.879+ 1.621 x1+ 2.163x2+ 2.537x3+ 0.094x1x2 0.042 x1 x3 0.157x2x3 0.067x1 2 0.599× 103x2 2 0.157x3 2
CO YCO[%]=0.4470.058 x1+ 0.565x2+ 0.327x3+ 0.010x1x2+6.666 ×10 3x1 x3 0.022x2x3+ 6.320× 103x1 2 0.143x2 2 0.026x3 2
HC YHC[ ppm]=275.54420.380x 1 21.722 x2 22.238x3+ 2.266x1 x2 0.466 x1x 3 0.444 x2x 3+ 1.952x12+7.911 x2 2+ 1.977 x3 2
CO2 Y CO2 [%]=2.752 0.152x 1+ 0.319 x2+ 0.120x3+ 9.333× 103x1x26.666 ×104x1 x3 0.040 x2x 3+ 0.013x120.012 x2 2 5.333× 10 3x32
NOx Y NOx[ppm]=36.066+14.730x1 2.055x2+ 19.322x3+ 0.266 x1 x2 0.066x1x3 0.666 x2 x3 1.272 x12 5.244 x22 1.422 x32
Tab.9  Final correlations for variables of response in terms of real factors
Run Performance characteristics
T/(Nm) Pb/kW BSFC/(g·(kWh)–1) BTE/%
Exp. Pre. Exp. Pre. Exp. Pre. Exp. Pre.
1 19.85 19.85 3.78 3.78 391.61 391.80
436.82
24.43 24.41
2 19.27 19.23 3.67 3.66 437.80 25.27 25.23
3 19.56 19.58 3.72 3.73 397.46 398.33 23.76 23.78
4 19.86 19.85 3.79 3.78 386.60 388.47 22.65 22.60
5 19.35 19.36 3.69 3.69 410.99 409.12 24.32 24.36
6 19.89 19.88 3.79 3.79 374.69 371.96 22.60 22.63
7 19.76 19.73 3.76 3.75 371.24 373.00 23.67 23.61
8 19.88 19.85 3.79 3.78 392.84 391.80 24.40 24.41
9 19.15 19.16 3.65 3.65 420.66 423.40 25.00 24.97
10 19.86 19.85 3.78 3.78 389.83 391.80 24.46 24.41
11 19.47 19.50 3.71 3.71 405.54 403.78 24.13 24.19
12 19.65 19.63 3.74 3.74 387.07 386.20 23.33 23.32
13 19.83 19.85 3.77 3.78 391.35 391.80 24.41 24.41
14 19.95 20.00 3.80 3.81 372.28 373.26 22.40 22.44
15 19.30 19.33 3.68 3.68 416.49 416.60 24.57 24.59
16 19.90 19.87 3.78 3.78 383.92 383.81 22.40 22.37
17 19.83 19.85 3.78 3.78 393.38 391.80 24.38 24.41
Run Emission characteristics
CO/% HC/ppm CO2/% NOx/ppm
Exp. Pre. Exp. Pre. Exp. Pre. Exp. Pre.
1 0.98 0.99 152 151.60 3.04 3.04 134 134.40
2 1.10 1.08 203 203.37 3.35 3.36 108 106.25
3 0.81 0.81 169 168.25 3.07 3.05 122 124.13
4 0.77 0.79 150 151.37 3.02 3.03 129 127.50
5 1.16 1.14 178 176.63 3.19 3.18 117 118.50
6 0.79 0.78 148 147.37 2.95 2.96 137 136.38
7 0.89 0.88 150 151.00 2.99 2.99 137 135.88
8 1.02 0.99 151 151.60 3.04 3.04 135 134.40
9 1.09 1.11 192 192.63 3.29 3.28 110 110.63
10 0.99 0.99 153 151.60 3.08 3.04 133 134.40
11 0.85 0.86 172 171.00 3.15 3.15 118 119.13
12 0.83 0.83 151 151.75 2.89 2.91 136 133.88
13 0.96 0.99 150 151.60 3.01 3.04 134 134.40
14 0.75 0.77 142 141.62 2.93 2.92 140 141.75
15 1.13 1.16 187 187.38 3.25 3.26 114 113.63
16 0.85 0.83 146 145.62 2.98 2.97 132 132.38
17 0.98 0.99 152 151.60 3.05 3.04 136 134.40
Tab.10  BBDs with corresponding experimental and predicted responses for variables of response
Source Performance characteristics models
T/(N·m) Pb/kW BSFC/(g·(kWh)–1) BTE/%
F-value P-value F-value P-value F-value P-value F-value P-value
Model 80.85 <0.0001 67.61 <0.0001 100.86 <0.0001 474.75 <0.0001
x1 529.63 <0.0001 434.89 <0.0001 632.59 <0.0001 3353.16 <0.0001
x2 25.03 0.0016 23.00 0.0020 164.19 <0.0001 174.44 <0.0001
x3 9.57 0.0175 9.22 0.0190 31.03 0.0008 2.58 0.1519
x1x2 0.017 0.9013 0.035 0.8572 6.96 0.0336 40.30 0.0004
x1x3 4.24 0.0786 1.40 0.2757 1.14 0.3208 32.78 0.0007
x2x3 0.066 0.8044 0.000 1.0000 2.68 0.1458 40.63 0.0004
x12 59.61 0.0001 48.06 0.0002 65.85 <0.0001 239.18 <0.0001
x22 25.82 0.0014 19.74 0.0030 0.42 0.5357 154.41 <0.0001
x32 57.59 0.0001 58.29 0.0001 3.72 0.0951 169.86 <0.0001
Lack of fit 6.50 0.0511 2.56 0.1929 5.47 0.0672 5.53 0.0659
R2 0.9905 0.9886 0.9923 0.9984
Adj. R2 0.9782 0.9740 0.9825 0.9863
Pred. R2 0.8710 0.8743 0.8992 0.9784
Adeq. precision 27.968 25.514 35.719 66.991
CVa/% 0.2 0.21 0.6 0.23
SDb 0.039 8.03 2.37 0.056
Source Emission characteristics models
CO/% HC/ppm CO2/% NOx/ppm
F-value P-value F-value P-value F-value P-value F-value P-value
Model 39.81 <0.0001 312.31 <0.0001 44.72 <0.0001 47.69 <0.0001
x1 283.91 <0.0001 1969.63 <0.0001 274.21 <0.0001 243.62 <0.0001
x2 1.63 0.2425 346.68 <0.0001 66.29 <0.0001 86.39 <0.0001
x3 0.000 1.0000 3.19 0.1174 0.48 0.5124 6.03 0.0438
x1x2 2.09 0.1919 37.60 0.0005 1.87 0.2142 0.25 0.6351
x1x3 3.26 0.1140 6.38 0.0395 0.038 0.8508 0.062 0.8112
x2x3 3.26 0.1140 0.52 0.4940 12.34 0.0098 0.55 0.4811
x12 8.56 0.0221 326.16 <0.0001 46.89 0.0002 65.48 <0.0001
x22 35.57 0.0006 43.39 0.0003 0.31 0.5925 9.02 0.0199
x32 20.09 0.0029 43.39 0.0003 0.92 0.3685 10.61 0.0139
Lack of fit 20.09 0.2089 2.12 0.2410 1.10 0.4469 5.96 0.0587
R2 0.9808 0.9975 0.9829 0.9840
Adj. R2 0.9562 0.9943 0.9609 0.9633
Pred. R2 0.7923 0.9741 0.8619 0.7856
Adeq. precision 18.006 58.083 22.964 22.959
CVa/% 2.95 0.86 0.83 1.58
SDb 0.028 1.39 0.026 2.02
Tab.11  ANOVA results and statistical parameters of developed quadratic correlations
Fig.4  Response surface plots of torque as a function.
Fig.5  Response surface plots of brake power as a function.
Fig.6  Response surface plots of BSFC as a function.
Fig.7  Response surface plots of BTE as a function.
Fig.8  Response surface plots of CO as a function.
Fig.9  Response surface plots of HC as a function.
Fig.10  Response surface plots of CO2 as a function.
Fig.11  Response surface plots of NOx as a function.
Optimum parameters Value Fixed parameters Value
Water/% (vol) 5 Engine speed 1800 r/min
Surfactant/% (vol) 2 Engine load 100%
HLB 6.8
Response parameters Predicted Experimental
Run 1
Experimental
Run 2
Experimental
Run 3
Average Error /%
T/(N·m) 19.84 19.86 19.82 19.80 19.83 0.07
Pb/kW 3.781 3.786 3.780 3.788 3.785 0.10
BSFC/(g·(kWh)1) 387.42 386.60 390.06 390.22 388.96 0.40
BTE/% 22.57 22.64 22.44 22.43 22.50 0.30
CO/% 0.77 0.79 0.75 0.81 0.78 1.70
HC/ppm 152.06 150 149 159 153 0.40
CO2/% 3.02 3.05 2.94 2.97 2.99 1.12
NOx/ppm 128.63 124 132 133 130 0.80
Tab.12  Validation and repeatability test for engine performance and exhaust emission achieved under optimal conditions
Response parameters Best emulsion fuel Neat diesel fuel
T/(N·m) 19.83 21.56
Pb/kW 3.785 4.12
BSFC/(g·(kWh)1) 388.96 362.47
BTE/% 22.50 21.39
CO/% 0.78 0.69
HC/ppm 153 166
CO2/% 2.99 2.85
NOx/ppm 130 159
Tab.13  Comparison of engine performance and exhaust emission for the best emulsion fuel and neat diesel fuel at an engine speed of 1800 r/min and full load
Fuel type/load/% Engine performance Exhaust emission
T/(N·m) Pb/kW BSFC/(g·(kWh)–1) BTE/% CO/% HC/ppm CO2/% NOx/ppm
Best emulsion fuel/100 19.83 3.785 388.96 22.50 0.78 153 2.99 130
Neat diesel fuel/100 21.56 4.120 362.47 21.39 0.69 166 2.85 159
Best emulsion fuel/50 9.76 1.860 511.56 17.11 0.10 63 2.31 154
Neat diesel fuel/50 11.53 2.196 460.48 16.84 0.17 78 2.38 207
Tab.14  Effect of engine load on engine performance and exhaust emission
1 M R Seifi, S R Hassan-Beygia, B Ghobadian, U Desideri, M Antonelli. Experimental investigation of a diesel engine power, torque and noise emission using water–diesel emulsions. Fuel, 2016, 166: 392–399
https://doi.org/10.1016/j.fuel.2015.10.122
2 N A Mazlan, W J Yahya, A M Ithnin, A K Hasannuddin, N A Ramlan, D A Sugeng, A R Muhammad Adib, T Koga, R Mamat, N A C Sidik. Effects of different water percentages in non-surfactant emulsion fuel on performance and exhaust emissions of a light-duty truck. Journal of Cleaner Production, 2018, 179: 559–566
https://doi.org/10.1016/j.jclepro.2018.01.143
3 YH Tan, MO Abdullah, C Nolasco-Hipolito, N S Ahmad Zauzia, G W Abdullahb. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions. Energy Conversion and Management, 2017, 132: 54–64
https://doi.org/10.1016/j.enconman.2016.11.013
4 A Alahmer, J Yamin, A Sakhrieh, M A Hamdan. Engine performance using emulsified diesel fuel. Energy Conversion and Management, 2010, 51(8): 1708–1713
https://doi.org/10.1016/j.enconman.2009.11.044
5 W M Yang, H An, S K Chou, K J Chua, B Mohan, V Sivasankaralingam, V Raman, A Maghbouli, J Li. Impact of emulsion fuel with nano-organic additives on the performance of diesel engine. Applied Energy, 2013, 112(Supplement C): 1206–1212
https://doi.org/10.1016/j.apenergy.2013.02.027
6 M Abu-Zaid. Performance of single cylinder, direct injection diesel engine using water fuel emulsions. Energy Conversion and Management, 2004, 45(5): 697–705
https://doi.org/10.1016/S0196-8904(03)00179-1
7 V Suresh, K S Amirthagadeswaran. Combustion and performance characteristics of water-in-diesel emulsion fuel. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2015, 37(18): 2020–2028
https://doi.org/10.1080/15567036.2015.1072605
8 B S Bidita, A R Suraya, A Shazed, M A Mohd Salleh, A Idris. Influence of fuel additive in the formulation and combustion characteristics of water-in-diesel nanoemulsion fuel. Energy & Fuels, 2014, 28(6): 4149–4161
https://doi.org/10.1021/ef5002259
9 A M Ithnin, M A Ahmad, M A A Bakar, S Rajoo, W J Yahya. Combustion performance and emission analysis of diesel engine fuelled with water-in-diesel emulsion fuel made from low-grade diesel fuel. Energy Conversion and Management, 2015, 90: 375–382
https://doi.org/10.1016/j.enconman.2014.11.025
10 J S Basha, R B Anand. An experimental study in a CI engine using nanoadditive blended water–diesel emulsion fuel. International Journal of Green Energy, 2011, 8(3): 332–348
https://doi.org/10.1080/15435075.2011.557844
11 D Ogunkoya, S Li, O J Rojas, T Fang. Performance, combustion, and emissions in a diesel engine operated with fuel-in-water emulsions based on lignin. Applied Energy, 2015, 154: 851–861
https://doi.org/10.1016/j.apenergy.2015.05.036
12 A Alahmer. Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine. Energy Conversion and Management, 2013, 73: 361–369
https://doi.org/10.1016/j.enconman.2013.05.012
13 A M A Attia, A R Kulchitskiy. Influence of the structure of water-in-fuel emulsion on diesel engine performance. Fuel, 2014, 116: 703–708
https://doi.org/10.1016/j.fuel.2013.08.057
14 W Yang, H An, S K Chou, S Vedharaji, R Vallinagam, M Balaji, F E A Mohammad, K J E Chua. Emulsion fuel with novel nano-organic additives for diesel engine application. Fuel, 2013, 104: 726–731
https://doi.org/10.1016/j.fuel.2012.04.051
15 S Henningsen. Influence of the fuel injection equipment on NOx emissions and particulates on a large heavy-duty two-stroke diesel engine operating on water-in-fuel emulsion. SAE Technical Paper, 1994
16 M Nadeem, C Rangkuti, K Anuar, M R U Haq, I B Tan, S S Shah. Diesel engine performance and emission evaluation using emulsified fuels stabilized by conventional and gemini surfactants. Fuel, 2006, 85(14–15): 2111–2119
https://doi.org/10.1016/j.fuel.2006.03.013
17 R Ochoterena, A Lif, M Nydén, S Andersson, I Denbratt. Optical studies of spray development and combustion of water-in-diesel emulsion and microemulsion fuels. Fuel, 2010, 89(1): 122–132
https://doi.org/10.1016/j.fuel.2009.06.039
18 K A Subramanian. A comparison of water–diesel emulsion and timed injection of water into the intake manifold of a diesel engine for simultaneous control of NO and smoke emissions. Energy Conversion and Management, 2011, 52(2): 849–857
https://doi.org/10.1016/j.enconman.2010.08.010
19 C Y Lin, L W Chen. Engine performance and emission characteristics of three-phase diesel emulsions prepared by an ultrasonic emulsification method. Fuel, 2006, 85(5–6): 593–600
https://doi.org/10.1016/j.fuel.2005.09.007
20 C Y Lin, H A Lin. Engine performance and emission characteristics of a three-phase emulsion of biodiesel produced by peroxidation. Fuel Processing Technology, 2007, 88(1): 35–41
https://doi.org/10.1016/j.fuproc.2006.07.008
21 R R Hegde, P Sharma, P Raj, R V Keny, P J Bhide, S Kumar, S S Bhattacharya, A Lohani, A Kumar, A Verma, P Chakraborty, A Ghosh, V Trivedi. Factors affecting emissions from diesel fuel and water-in-diesel emulsion. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2016, 38(12): 1771–1778
https://doi.org/10.1080/15567036.2014.989341
22 P Ramakrishnan, R Kasimani, M S Peer. Optimization in the performance and emission parameters of a DI diesel engine fuelled with pentanol added Calophyllum inophyllum/diesel blends using response surface methodology. Environmental Science and Pollution Research International, 2018, 25(29): 29115–29128
https://doi.org/10.1007/s11356-018-2867-4
23 S Vellaiyan, A Subbiah, P Chockalingam. Multi-response optimization to obtain better performance and emission level in a diesel engine fueled with water-biodiesel emulsion fuel and nanoadditive. Environmental Science and Pollution Research International, 2019, 26(5): 4833–4841
https://doi.org/10.1007/s11356-018-3979-6
24 E Khalife, M Tabatabaei, A Demirbas, M Aghbashlo. Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 2017, 59: 32–78
https://doi.org/10.1016/j.pecs.2016.10.001
25 J S Basha, R Anand. An experimental investigation in a diesel engine using carbon nanotubes blended water–diesel emulsion fuel. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, 2011, 225(3): 279–288
https://doi.org/10.1177/2041296710394247
26 Z B Chen, X C Wang, Y Q Pei, C Zhang, M Xiao, J He. Experimental investigation of the performance and emissions of diesel engines by a novel emulsified diesel fuel. Energy Conversion and Management, 2015, 95: 334–341
https://doi.org/10.1016/j.enconman.2015.02.016
27 V W Khond, V M Kriplani. Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: a comprehensive review. Renewable & Sustainable Energy Reviews, 2016, 59: 1338–1348
https://doi.org/10.1016/j.rser.2016.01.051
28 A A Abdel-Rehim, S Y Akl. An experimental investigation of the effect of aluminum oxide (Al2O3) nanoparticles as fuel additive on the performance and emissions of a diesel engine. SAE Technical Paper, 2016
https://doi.org/10.4271/2016-01-0828
29 M E A Fahd, Y Wenming, P S Lee, S K Chou, C R Yap. Experimental investigation of the performance and emission characteristics of direct injection diesel engine by water emulsion diesel under varying engine load condition. Applied Energy, 2013, 102: 1042–1049
https://doi.org/10.1016/j.apenergy.2012.06.041
30 H Raheman, S Kumari. Combustion characteristics and emissions of a compression ignition engine using emulsified jatropha biodiesel blend. Biosystems Engineering, 2014, 123(Supplement C): 29–39
https://doi.org/10.1016/j.biosystemseng.2014.05.001
31 A B Koc, M Abdullah. Performance and NOx emissions of a diesel engine fueled with biodiesel-diesel-water nanoemulsions. Fuel Processing Technology, 2013, 109(Supplement C): 70–77
https://doi.org/10.1016/j.fuproc.2012.09.039
32 B K Debnath, N Sahoo, U K Saha. Adjusting the operating characteristics to improve the performance of an emulsified palm oil methyl ester run diesel engine. Energy Conversion and Management, 2013, 69: 191–198
https://doi.org/10.1016/j.enconman.2013.01.031
33 L Feng, B G Du, J P Tian, W Long, B Tang. Combustion performance and emission characteristics of a diesel engine using a water-emulsified heavy fuel oil and light diesel blend. Energies, 2015, 8(12): 13628–13640
https://doi.org/10.3390/en81212387
34 A K Wamankar, S Murugan. Combustion, performance and emission characteristics of a diesel engine with internal jet piston using carbon black-water-diesel emulsion. Energy, 2015, 91: 1030–1037
https://doi.org/10.1016/j.energy.2015.08.085
35 J Sadhik Basha, R B Anand. Role of nanoadditive blended biodiesel emulsion fuel on the working characteristics of a diesel engine. Journal of Renewable and Sustainable Energy, 2011, 3(2): 023106
https://doi.org/10.1063/1.3575169
36 B J Sadhik. AnandR.Effects of nanoparticle additive in the water-diesel emulsion fuel on the performance, emission and combustion characteristics of a diesel engine. International Journal of Vehicle Design, 2012, 59(2–3): 164–181
37 A Hasannuddin, J Y Wira, S Sarah, W M N Wan Syaidatul Aqma, A R Abdul Hadi, N Hirofumi, S A Aizam, M A B Aiman, S Watanabe, M I Ahmad, M A Azrin. Performance, emissions and lubricant oil analysis of diesel engine running on emulsion fuel. Energy Conversion and Management, 2016, 117: 548–557
https://doi.org/10.1016/j.enconman.2016.03.057
38 M Senthil Kumar, M Jaikumar. A comprehensive study on performance, emission and combustion behavior of a compression ignition engine fuelled with WCO (waste cooking oil) emulsion as fuel. Journal of the Energy Institute, 2014, 87(3): 263–271
https://doi.org/10.1016/j.joei.2014.03.001
39 K Kannan, M Udayakumar. NOx and HC emission control using water emulsified diesel in single cylinder diesel engine. Journal of Engineering and Applied Sciences (Asian Research Publishing Network), 2009, 4(8): 59–62
40 D A Sugeng, W J Yahya, A M Ithnin, M A Abdul Rashid, N S Mohd Syahril Amri, H Abd Kadir, M N Abdul Halim. Diesel engine emission analysis using fuel from diverse emulsification methods. Environmental Science and Pollution Research International, 2018, 25(27): 27214–27224
https://doi.org/10.1007/s11356-018-2760-1
41 P K Mondal, B K Mandal. Experimental investigation on the combustion, performance and emission characteristics of a diesel engine using water emulsified diesel prepared by ultrasonication. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(11): 510
https://doi.org/10.1007/s40430-018-1419-7
42 M A Bezerra, R E Santelli, E P Oliveira, L S Villar, L A Escaleira. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008, 76(5): 965–977
https://doi.org/10.1016/j.talanta.2008.05.019
43 H Patil, A Gadhave, S Mane, J Waghmare. Analyzing the stability of the water-in-diesel fuel emulsion. Journal of Dispersion Science and Technology, 2015, 36(9): 1221–1227
https://doi.org/10.1080/01932691.2014.962039
44 M R Noor El-Din, S H El-Hamouly, H M Mohamed, M R Mishrif, A M Ragab. Water-in-diesel fuel nanoemulsions: Preparation, stability and physical properties. Egyptian Journal of Petroleum, 2013, 22(4): 517–530
https://doi.org/10.1016/j.ejpe.2013.11.006
45 A K Hasannuddin, M I Ahmad, M Zahari, S S Mohd, A B Aiman, S A Aizam, J Y Wira. Stability studies of water-in-diesel emulsion. Applied Mechanics and Materials, 2014, 663: 54–57
https://doi.org/10.4028/www.scientific.net/AMM.663.54
46 M T Ghannam, M Y Selim. Stability behavior of water-in-diesel fuel emulsion. Petroleum Science and Technology, 2009, 27(4): 396–411
https://doi.org/10.1080/10916460701783969
47 M Y E Selim, M T Ghannam. Combustion study of stabilized water-in-diesel fuel emulsion. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2009, 32(3): 256–274
https://doi.org/10.1080/15567030802467621
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed