Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2019, Vol. 13 Issue (4) : 626-635    https://doi.org/10.1007/s11708-019-0650-y
RESEARCH ARTICLE
Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries and assessment criteria from an industrial perspective
Jingning SHAN1(), Xiaofang YANG2, Chao YAN3, Lin CHEN4, Fang ZHAO5, Yiguang JU3()
1. Department of Mechanical and Aerospace Engineering, Princeton University; HiT Nano, Inc, Princeton NJ 08540, USA
2. HiT Nano, Inc, Princeton 08540, USA
3. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton NJ 08544, USA
4. Department of Mechatronics Engineering, College of Mechanical Engineering, Guangxi University, Nanning 530004, China
5. Department of Physics, Princeton University, Princeton NJ 08544, USA
 Download: PDF(1494 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Single wall carbon nanotube (SWCNT) additives were formulated into µm-Si-graphite composite electrodes and tested in both half cells and full cells with high nickel cathodes. The critical role of small amount of SWCNT addition (0.2 wt%) was found for significantly improving delithiation capacity, first cycle coulombic efficiency (FCE), and capacity retention. Particularly, Si (10 wt%)-graphite electrode exhibits 560 mAh/g delithiation capacity and 92% FCE at 0.2 C during the first charge-discharge cycle, and 91% capacity retention after 50 cycles (0.5 C) in a half cell. Scanning electron microscope (SEM) was used to illustrate the electrode morphology, compositions and promoting function of the SWCNT additives. In addition, full cells assembled with high nickel-NCM811 cathodes and µm-Si-graphite composite anodes were evaluated for the consistence between half and full cell performance, and the consideration for potential commercial application. Finally, criteria to assess Si-containing anodes are proposed and discussed from an industrial perspective.

Keywords lithium-ion battery      Si anode      Si-graphite composite      single wall carbon nanotube (SWCNT)      NCM811     
Corresponding Author(s): Jingning SHAN,Yiguang JU   
Online First Date: 05 December 2019    Issue Date: 26 December 2019
 Cite this article:   
Jingning SHAN,Xiaofang YANG,Chao YAN, et al. Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries and assessment criteria from an industrial perspective[J]. Front. Energy, 2019, 13(4): 626-635.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-019-0650-y
https://academic.hep.com.cn/fie/EN/Y2019/V13/I4/626
Fig.1  (a) XRD, (b) SEM and (c) EDS results of Si powder.
Fig.2  V-profiles of (a) Si-only, (b) Graphite, (c) Si-graphite composite, (d) first delithiation V-curves and (e) capacity retention.
Si wt% No SWCNT 0.2 wt% SWCNT
Si Pure Graphite-only 3 5 1.5 3 5 10 20
1st lithiation (mAh/g, 0.2 C) 3497.8 362.5 440.1 462.6 407.6 437.3 489.7 613.5 879.6
1st delithiation (mAh/g, 0.2 C) 2548.5 344.1 393.1 375.8 382.8 406.1 455.1 562.5 788.8
FCE (100%) 0.729 0.949 0.893 0.812 0.939 0.929 0.929 0.917 0.897
Si Capacity utilized (mAh/g) 1981 980 2931 2414 2566 2529 2568
Tab.1  Capacity, CE and Si capacity contribution summary
Fig.3  V-profiles of (a) Si (3 wt%)-graphite composite anode, (b) capacity retention and (c) rate capability of the electrodes with and without SWCNT additives.
Fig.4  SEM images of the electrodes with SWCNT(a) original, (b) with Si/SWCNT, (b) and (c) enlarged area from (a), (d) electrode without SWCNT, and (e) electrode with SWCNT after 50 cycles.
Fig.5  (a) Capacity vs. cycles, (b) capacity retention, (c) capacity vs. mass saved, and (d) CE vs. cycles for Si (1.5 wt%–20 wt%)-graphite composite electrodes.
Fig.6  The electrochemical performance of NCM811/Si-graphite full cells (a) first cycle V-profile comparison; (b) capacity vs. cycles; (c) capacity retention; (d) FCE/CCE comparison.
1 J M Tarascon, M Armand. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367
https://doi.org/10.1038/35104644
2 B Dunn, H Kamath, J M Tarascon. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058): 928–935
https://doi.org/10.1126/science.1212741
3 B L Ellis, K T Lee, L F Nazar. Positive electrode materials for Li-ion and Li-batteries. Chemistry of Materials, 2010, 22(3): 691–714
https://doi.org/10.1021/cm902696j
4 V Etacheri, R Marom, R Elazari, G Salitra, D Aurbach. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011, 4(9): 3243–3262
https://doi.org/10.1039/c1ee01598b
5 J B Goodenough, Y Kim. Challenges for rechargeable Li batteries. Chemistry of Materials, 2010, 22(3): 587–603
https://doi.org/10.1021/cm901452z
6 S Goriparti, E Miele, F De Angelis, E Di Fabrizio, R Proietti Zaccaria, C Capiglia. Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 2014, 257: 421–443
https://doi.org/10.1016/j.jpowsour.2013.11.103
7 X Su, Q L Wu, J C Li, X Xiao, A Lott, W Lu, B W Sheldon, J Wu. Silicon-based nanomaterials for lithium-ion batteries: a review. Advanced Energy Materials, 2014, 4(1): 1300882
https://doi.org/10.1002/aenm.201300882
8 Y Jin, B Zhu, Z D Lu, N Liu, J Zhu. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Advanced Energy Materials, 2017, 7(23): 1700715
https://doi.org/10.1002/aenm.201700715
9 J F Qian, W A Henderson, W Xu, P Bhattacharya, M Engelhard, O Borodin, J G Zhang. High rate and stable cycling of lithium metal anode. Nature Communications, 2015, 6(1): 6362
https://doi.org/10.1038/ncomms7362
10 G Y Zheng, S W Lee, Z Liang, H W Lee, K Yan, H Yao, H Wang, W Li, S Chu, Y Cui. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotechnology, 2014, 9(8): 618–623
https://doi.org/10.1038/nnano.2014.152
11 S F Yang, P Y Zavalij, M S Whittingham. Anodes for lithium batteries: tin revisited. Electrochemistry Communications, 2003, 5(7): 587–590
https://doi.org/10.1016/S1388-2481(03)00135-8
12 C K Chan, H Peng, G Liu, K McIlwrath, X F Zhang, R A Huggins, Y Cui. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35
https://doi.org/10.1038/nnano.2007.411
13 X H Liu, J Y Huang. In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy & Environmental Science, 2011, 4(10): 3844–3860
https://doi.org/10.1039/c1ee01918j
14 J Li, J R Dahn. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. Journal of the Electrochemical Society, 2007, 154(3): A156–A161
https://doi.org/10.1149/1.2409862
15 J R Szczech, S Jin. Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science, 2011, 4(1): 56–72
https://doi.org/10.1039/C0EE00281J
16 Y Z Li, K Yan, H W Lee, Z Lu, N Liu, Y Cui. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nature Energy, 2016, 1(2): 15029
https://doi.org/10.1038/nenergy.2015.29
17 H S Kim, K Y Chung, L W Cho. Effect of carbon-coated silicon/graphite composite anode on the electrochemical properties. Bulletin of the Korean Chemical Society, 2008, 29(10): 1965–1968
https://doi.org/10.5012/bkcs.2008.29.10.1965
18 N Liu, H Wu, M T McDowell, Y Yao, C Wang, Y Cui. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Letters, 2012, 12(6): 3315–3321
https://doi.org/10.1021/nl3014814
19 L Q Zong, Y Jin, C Liu, B Zhu, X Hu, Z Lu, J Zhu. Precise perforation and scalable production of Si particles from low-grade sources for high-performance lithium ion battery anodes. Nano Letters, 2016, 16(11): 7210–7215
https://doi.org/10.1021/acs.nanolett.6b03567
20 M Sohn, D G Lee, H I Park, C Park, J H Choi, H Kim. Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering. Advanced Functional Materials, 2018, 28(23): 1800855
https://doi.org/10.1002/adfm.201800855
21 M N Obrovac. Si-alloy negative electrodes for Li-ion batteries. Current Opinion in Electrochemstry, 2018, 9: 8–17
https://doi.org/10.1016/j.coelec.2018.02.002
22 X D Huang, X F Gan, F Zhang, Q A Huang, J Z Yang. Improved electrochemical performance of silicon nitride film by hydrogen incorporation for lithium-ion battery anode. Electrochimica Acta, 2018, 268: 241–247
https://doi.org/10.1016/j.electacta.2018.02.117
23 W Q Lu, L H Zhang, Y Qin, A Jansen. Calendar and cycle life of lithium-ion batteries containing silicon monoxide anode. Journal of the Electrochemical Society, 2018, 165(10): A2179–A2183
https://doi.org/10.1149/2.0631810jes
24 M R Su, Z Wang, H Guo, X Li, S Huang, W Xiao, L Gan. Enhancement of the cyclability of a Si/Graphite@Graphene composite as anode for Lithium-ion batteries. Electrochimica Acta, 2014, 116: 230–236
https://doi.org/10.1016/j.electacta.2013.10.195
25 L Gan, H Guo, Z Wang, X Li, W Peng, J Wang, S Huang, M Su. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochimica Acta, 2013, 104: 117–123
https://doi.org/10.1016/j.electacta.2013.04.083
26 C H Yim, F M Courtel, Y Abu-Lebdeh. A high capacity silicon-graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(28): 8234–8243
https://doi.org/10.1039/c3ta10883j
27 V G Khomenko, V Z Barsukov, J E Doninger, I V Barsukov. Lithium-ion batteries based on carbon-silicon-graphite composite anodes. Journal of Power Sources, 2007, 165(2): 598–608
https://doi.org/10.1016/j.jpowsour.2006.10.059
28 W Wang, P N Kumta. Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. Journal of Power Sources, 2007, 172(2): 650–658
https://doi.org/10.1016/j.jpowsour.2007.05.025
29 Y N Jo, Y Kim, J S Kim, J H Song, K J Kim, C Y Kwag, D J Lee, C W Park, Y J Kim. Si-graphite composites as anode materials for lithium secondary batteries. Journal of Power Sources, 2010, 195(18): 6031–6036
https://doi.org/10.1016/j.jpowsour.2010.03.008
30 J Zhao, Z Lu, N Liu, H W Lee, M T McDowell, Y Cui. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents. Nature Communications, 2014, 5(1): 5088
https://doi.org/10.1038/ncomms6088
31 H J Kim, S Choi, S J Lee, M W Seo, J G Lee, E Deniz, Y J Lee, E K Kim, J W Choi. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Letters, 2016, 16(1): 282–288
https://doi.org/10.1021/acs.nanolett.5b03776
32 B Liang, Y P Liu, Y H Xu. Silicon-based materials as high capacity anodes for next generation lithium ion batteries. Journal of Power Sources, 2014, 267: 469–490
https://doi.org/10.1016/j.jpowsour.2014.05.096
33 D Andre, S J Kim, P Lamp, S F Lux, F Maglia, O Paschos, B Stiaszny. Future generations of cathode materials: an automotive industry perspective. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 6709–6732
https://doi.org/10.1039/C5TA00361J
34 X H Liu, L Zhong, S Huang, S X Mao, T Zhu, J Y Huang. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012, 6(2): 1522–1531
https://doi.org/10.1021/nn204476h
35 C de las Casas, W Li. Li W Z. A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources, 2012, 208: 74–85
https://doi.org/10.1016/j.jpowsour.2012.02.013
36 J Zhang, Y H Liang, Q Zhou, Y Peng, H B Yang. Enhancing electrochemical properties of silicon-graphite anodes by the introduction of cobalt for lithium-ion batteries. Journal of Power Sources, 2015, 290: 71–79
https://doi.org/10.1016/j.jpowsour.2015.05.003
37 M Klett, J A Gilbert, K Z Pupek, S E Trask, D P Abraham. Layered oxide, graphite and silicon-graphite electrodes for lithium-ion cells: effect of electrolyte composition and cycling windows. Journal of the Electrochemical Society, 2017, 164(1): A6095–A6102
https://doi.org/10.1149/2.0131701jes
38 Charged Electric Vehicles Magazine. Solving the energy density challenge with single wall carbon. 2017, available at chargedevs.com website
39 R Dash, S Pannala. Theoretical limits of energy density in silicon-carbon composite anode based lithium ion batteries. Scientific Reports, 2016, 6(1): 27449
https://doi.org/10.1038/srep27449
40 C Abram, J Shan, X Yang, C Yan, D Steingart, Y Ju. Flame aerosol synthesis and electrochemical characterisation of Ni-rich layered cathode materials for Li-ion batteries. ACS Applied Energy Materials, 2019, 2(2): 1319–1329
https://doi.org/10.1021/acsaem.8b01892
41 A T Sun, H Zhong, X Zhou, J Tang, M Jia, F Cheng, Q Wang, J Yang. Scalable synthesis of carbon-encapsulated nano-Si on graphite anode material with high cyclic stability for lithium-ion batteries. Applied Surface Science, 2019, 470: 454–461
https://doi.org/10.1016/j.apsusc.2018.11.117
42 G Fang, X L Deng, J Z Zou, X Zeng. Amorphous/ordered dual carbon coated silicon nanoparticles as anode to enhance cycle performance in lithium ion batteries. Electrochimica Acta, 2019, 295: 498–506
https://doi.org/10.1016/j.electacta.2018.10.186
43 D Sui, Y Xie, W Zhao, H Zhang, Y Zhou, X Qin, Y Ma, Y Yang, Y Chen. A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell. Journal of Power Sources, 2018, 384: 328–333
https://doi.org/10.1016/j.jpowsour.2018.03.008
[1] Zhengxu BIAN, Zehua TANG, Jinfeng XIE, Junhao ZHANG, Xingmei GUO, Yuanjun LIU, Aihua YUAN, Feng ZHANG, Qinghong KONG. Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery[J]. Front. Energy, 2020, 14(4): 759-766.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed