Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2019, Vol. 13 Issue (4) : 770-797    https://doi.org/10.1007/s11708-019-0651-x
REVIEW ARTICLE
Latest development of double perovskite electrode materials for solid oxide fuel cells: a review
Shammya AFROZE1, AfizulHakem KARIM1, Quentin CHEOK1, Sten ERIKSSON2, Abul K. AZAD1()
1. Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tunku Link, Gadong BE 1410, Brunei Darussalam
2. Department of Chemistry and Chemical Engineering, Energy and Materials, Environmental Inorganic Chemistry, Chalmers University of Technology, Goteborg SE 41296, Sweden
 Download: PDF(2919 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, the development and fabrication of electrode component of the solid oxide fuel cell (SOFC) have gained a significant importance, especially after the advent of electrode supported SOFCs. The function of the electrode involves the facilitation of fuel gas diffusion, oxidation of the fuel, transport of electrons, and transport of the byproduct of the electrochemical reaction. Impressive progress has been made in the development of alternative electrode materials with mixed conducting properties and a few of the other composite cermets. During the operation of a SOFC, it is necessary to avoid carburization and sulfidation problems. The present review focuses on the various aspects pertaining to a potential electrode material, the double perovskite, as an anode and cathode in the SOFC. More than 150 SOFCs electrode compositions which had been investigated in the literature have been analyzed. An evaluation has been performed in terms of phase, structure, diffraction pattern, electrical conductivity, and power density. Various methods adopted to determine the quality of electrode component have been provided in detail. This review comprises the literature values to suggest possible direction for future research.

Keywords double perovskites      electrode materials      hydrocarbon fuel      solid oxide fuel cells     
Corresponding Author(s): Abul K. AZAD   
Online First Date: 26 November 2019    Issue Date: 26 December 2019
 Cite this article:   
Shammya AFROZE,AfizulHakem KARIM,Quentin CHEOK, et al. Latest development of double perovskite electrode materials for solid oxide fuel cells: a review[J]. Front. Energy, 2019, 13(4): 770-797.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-019-0651-x
https://academic.hep.com.cn/fie/EN/Y2019/V13/I4/770
Fig.1  Annual fuel cell cars and buses that had been (and will be) sold from 2015 to 2024 in world market in these regions.
Fig.2  Raising global demand to use SOFC in the world market.
Fig.3  Schematic diagram of SOFC.
Fig.4  Schematic diagram of SOFC stack.
Fig.5  Advantages and disadvantages of SOFC with its working principle.
Fig.6  Schematic 3D representation of perovskite structure.
Electrodes t ?Electrodes t ?Electrodes t
Ba0.1Sr1.9NiWO6 0.985 ?Ca2CrWO6 0.945 ?Sr2MgMoO6−δ 0.977
Ba0.2Sr1.8NiWO6 0.988 ?Ca2FeReO6 0.970 ?Sr2MnMoO6−δ 0.952
Ba0.25Sr1.75NiWO6 0.989 ?Ca2FeMoO6−δ 0.860 ?Sr2FeMoO6−δ 0.963
Ba0.3Sr1.7NiWO6 0.991 ?Ca2CrSbO6 0.880 ?Sr2CoMoO6−δ 0.971
Ba0.4Sr1.6NiWO6 0.994 ?Ca2FeReO6 0.963 ?Sr2NiMoO6−δ 0.984
Ba0.5Sr1.5NiWO6 0.997 ?Ca2CoNbO6 0.961 ?Sr2ZnMoO6−δ 0.973
Ba0.75Sr1.25NiWO6 1.004 ?Ca2NiWO6 0.947 ?Sr2CrWO6 0.999
BaSrNiWO6 1.011 ?Ca1.9Sr0.1NiWO6 0.949 ?Sr2CeSbO6 0.920
Ba1.25Sr0.75NiWO6 1.019 ?Ca1.8Sr0.2NiWO6 0.951 ?Sm2LiOsO6 0.900
Ba1.5Sr0.5NiWO6 1.026 ?Ca1.6Sr0.4NiWO6 0.954 ?Sr2MnWO6 0.949
Ba2NiWO6 1.041 ?Ca1.5Sr0.5NiWO6 0.956 ?Sr2NiWO6 0.982
BaY(Cu0.5Fe0.5)2O5 1.056 ?Ca1.4Sr0.6NiWO6 0.958 ?A2MnMoO6 (A=Ba,Sr) 1.050
BaRE1−xLaxCo2−yFeyO6−δ 0.950–1.000 ?Ca1.25Sr0.75NiWO6 0.960 ?La2CuNiO6 0.825
Ba2−xSrxMnReO6
(x=0, 0.5, 1, 2)
1.000 ?Ca1.2Sr0.8NiWO6 0.961 ?La2NaIrO6 0.890
Ba2FeMoO6−δ 0.980 ?CaSrNiWO6 0.965 ?Pr2NaIrO6 0.880
Ba2CrWO6 1.059 ?Ca0.8Sr1.2NiWO6 0.968 ?Nd2NaIrO6 0.860
Ba2LaSbO6 0.960 ?Ca0.6Sr1.4NiWO6 0.972 ?La2LiOsO6 0.930
Ba2PrSbO6 0.970 ?Ca0.5Sr1.5NiWO6 0.973 ?Pr2LiOsO6 0.920
Ba2NdSbO6 0.971 ?Ca0.4Sr1.6NiWO6 0.975 ?Nd2LiOsO6 0.910
Ba2SmSbO6 0.977 ?Ca0.3Sr1.7NiWO6 0.977 ?Pb2FeMoO6 1.032
Ba2FeReO6 1.060 ?Ca0.2Sr1.8NiWO6 0.979 ?La2LiIrO6 0.940
Ba2CaWO6 0.967 ?Pr2LiIrO6 0.930
Ba2CaReO6 0.979 ?Nd2LiIrO6 0.920
Ba2CaOsO6 0.980 ?Sm2LiIrO6 0.910
Ba2CaUO6 0.940 ?Eu2LiIrO6 0.900
Ba2CaNpO6 0.942
Ba2CaPuO6 0.944
Ba2SrNpO6 0.906
Ba2SrNpO6 0.908
Ba2LaIrO6 0.967
Ba2YIrO6 0.997
Tab.1  Calculated tolerance factors of some double perovskite electrode materials
Fig.7  Number of double perovskite electrodes reported with different values of tolerance factor t.
Fig.8  B-cation sublattice types.
Sublattice type Cell size Cryatal system Space group Representative references
Random ap×ap×ap Cubic Pm-3m [110]
2ap×√2ap×2ap Orthorhombic Pbnm [111]
Ordered 2ap×2ap×2ap Cubic Fm-3ma [112]
√2ap×√2ap×2ap Tetragonal I4/ma [62,113]
√2ap×√2ap×2ap Monoclinic P2l/na [65]
2ap×2ap×2ap Monoclinic P2l/mb [114]
Tab.2  Sublattice types, cell sizes, crystal system, and space groups of two main B-site cations
Fig.9  A different kind of B-cation sublattices (adapted with permission from Ref. [105]).
Double perovskite anode materials Space group Phase Diffraction pattern Power density Conductivity Ref.
Sr2CoMoO6−δ,
Sr2NiMoO6–δ, Sr2Fe1.5Mo0.5O6–δ
I4/m Tetragonal XRD [131]
Sr2–xSmxNiMoO6–δ I4/m
I41/a (SrMoO4)
Tetragonal XRD [132]
Sr2FeNb0.2Mo0.8O6−δ I4/mmm Tetragonal XRD 19.5 S/cm in air and 5.3 S/cm in 5% H2 at 800°C [133]
Mo doped Pr0.5Ba0.5MnO3−δ(Mo-PBMO) Cubic and hexagonal XRD 700 mW/cm2 at 850°C 101 S/cm in air at 800°C [134]
A2FeMoO6
(AFMO, A=Ca, Sr, Ba)
P21/n (CFMO), P4/mmm(SFMO) and Fm-3m(BFMO) Monoclinic(CFMO), Tetragonal (SFMO) and cubic (BFMO) XRD 0.20 mW/cm2 (CFMO), 757 mW/cm2(SFMO) and 605 mW/cm2 (BFMO) at 850°C 306 S/cm for CFMO,
212 S/cm for SFMO
and 191 S/cm for BFMO in 5% H2 at 850°C
[128]
PrBaMn2O5+δ P4/mmm Tetragonal NDP [135]
SrLaFeO4 (SLFO4) I4mm Tetragonal XRD 0.93 W/cm2 at 900°C–700°C [136]
Sr2−xBaxMMoO6–δ
(M=Co, Ni; x=
0, 0.5, 1.0, 1.5,
2.0)
Fm-3m (Sr2CoMoO6–δ)
and I4/m(Sr2NiMoO6–δ)
Cubic (Sr2CoMoO6−δ) and Tetragonal (Sr2NiMoO6–δ) XRD 0.1 W/cm2 for Co-containing materials and 0.16 W/cm2 for Ni-containing materials at 850°C 0.2 S/cm for Co-containing materials
and<10−2 S/cm for Ni-containing materials at 800°C
[129]
Sr2MgMo1−xVxO6−d
(x=0–0.2)
XRD For x=0.5, 7.71 S/cm at 727°C in 5% H2/Ar [137]
Sr2Ti2xNi1−xMo1−xO6 (x=0, 0.1, 0.3, 0.5, 0.7) XRD 17–20 S/cm at 600°C–800°C [138]
Sr2Mg(Mo0.8Nb0.2)O6−δ XRD 0.2 S/cm at 800°C [139]
Ba2MMoO6
(M=Fe, Co, Mn, Ni)
Fm-3m Cubic XRD 605 mW/cm2 in H2 at 850°C 196 S/cm in dry H2 at 850°C [140]
Sr2MgMoO6−δ I4/m and Iīat RT and Fm-3m at 500°C Tetragonal and triclinic at RT, cubic at 500°C XRD [141]
Sr2Fe1.5Mo0.5O6–δGd0.1Ce0.9O2–δ (SFM-GDC) XRD 445 mW/cm2 at 700°C [142]
Sr2MgMoO6−δ (SMM) and Ce0.9Gd0.1O2 (GDC) XRD 110 mW/cm2
at 1100°C
[143]
Sr2−xSmxMgMoO6−δ (SSMM, 0≤x≤0.8) I4/m Tetragonal XRD 907 mW/cm2 at 850°C For x = 0.6, 16 S/cm in H2 at 800°C [27]
Sr2Fe2−xMoxO6−δ (SFMO) Cubic XRD 387 mW/cm2 at 1023 K and 541 mW/cm2 at 1073 K with H2, 341 mW/cm2
at 1023 K and 415 mW/cm2
at 1073 K with methanol
<0.1 S/cm in testing condition [144]
A2FeMoO6−δ (A=Ca, Sr, Ba) P21/n(Ca2FeMoO6−δ), I4/m(Sr2FeMoO6−δ), Fd−3m (Ba2FeMoO6−δ) Monoclinic (Ca2FeMoO6−δ), Tetragonal (Sr2FeMoO6−δ), Cubic (Ba2FeMoO6−δ) XRD 831 mW/cm2 for A = Sr, 561 mW/cm2 for A = Ba and 186 mW/cm2 for A=Ca at 850°C [145]
Sr2−xMgMoO6−δ (x=0–0.15) I-1 Triclinic XRD 659 mW/cm2 for x = 0.10
at 800°C
15.7 S/cm at 800°C in H2 [146]
Sr2MgMoO6−δ XRD 330 mW/cm2
at 800°C
0.8 S/cm in 5%H2/Ar at 800°C [147]
A2MgMoO6(A=Sr,Ba) P2 (SMMO) and P1 (BMMO) Monoclinic (SMMO) and triclinic (BMMO) XRD [148]
Sr2CoMoO6−δ Tetragonal XRD 1017 mW/cm2 in H2 at 800°C [149]
Sr2MgMoO6–δ I-1 Triclinic XRD 2.13 S/cm at 800°C [150]
Sr2Mg1–xAlxMoO6−δ (0≤x≤0.05) XRD 187 mW/cm2 at 800°C in H2 5.4 S/cm at 800°C [77]
Sr2Fe1.5Mo0.5O6−δ
(SFM)
Pm-3m Cubic XRD [151]
Sr2Fe1–xTixNbO6–δ
(x=0, 0.05, 0.10)
I4/m Tetragonal XRD 1.17 S/cm for SFTN0.1 at 750°C in 5% H2/Ar [152]
La2ZnMnO6 P21/n Monoclinic XRD 155 mW/cm2
at 650°C
0.054 S/cm at 650°C [153]
Sr2FeTiO6−δ Pm-3m Cubic XRD 441 mW/cm2
NiO–SDC/SDC/SFT at 800°C and 335 mW/cm2 SFT/SDC/SFT at 800°C
2.83 S/cm at 600°C [154]
Ba2FeMoO6−δ Cubic XRD [155]
Sr0.5Ba1.5CoMoO6–δ,SmBa0.5Sr0.5Co1.5Fe0.5O5+δ,
YBaCo2O5+δ,
Sr0.5Ba1.5CoMoO6–δ
120 mW/cm2
at 850°C
[156]
Sr2Fe1.5Mo0.5O6–δ Fm-3m Cubic XRD 42.6 mW/cm2
at 800°C
59.48 (51.96) S/cm at 800°C
in air
[157]
Sr2FeMoO6–δ Fm-3m Cubic XRD 1066 mW/cm2 at 800°C 25 S/cm at 800°C [130]
GdBaCo2O5+x Pmmm for T <525°C and P4/mmm at 525°C Orthorhombic (for T<525°C) and tetragonal (at 525°C) XRD >600 S/cm at 800°C [158]
Sr2FeCo0.5Mo0.5O6−δ
(SFCM)
Fm3m Cubic XRD 45.69 mW/cm2 at 800°C [159]
Sr2Fe1.5Mo0.5O6−δ (SFMO) XRD [160]
Tab.3  Various types of methods, space group, phase, conductivity, and highest power density of double perovskite type anode materials fabricated for SOFC
Double perovskite
as cathode
Space group Phase Diffraction pattern Power density Conductivity Ref.
NdBaCo2O5+d , PrBaCo2O5+d , GdBaCo2O5+d P4/mmm for NBCO, Pmmm for both PBCO and GBCO Tetragonal (NBCO), Orthorhombic (both PBCO and GBCO) XRD [170]
Pr2NiMnO6 P21/n Monoclinic XRD 3 S/cm at 800°C [171]
NdBaFe1.9Nb0.1O5+δ Pm-3m Cubic XRD 392 mW/cm2 at 700°C 109 S/cm under air, 101 S/cm under N2 and 119 S/cm under O2 at 450°C [172]
LaSrCoTiO5+δ XRD 776 mW/cm2 at 800°C 24–40 S/cm at 300°C–850°C [173]
Pr1−xCaxBaCo2O5+δ P4/mmm Tetragonal XRD 646.5 mW/cm2 at 800?C >320 S/cm between 300°C and 850°C in air [174]
EBaCo2O5 150–900 S/cm for PrBaCo2O5+δ, 200 to 1000 S/cm for NdBaCo2O5+δ, 100 and 500 S/cm for GdBaCo2O5+δ, 250 and 850 S/cm for SmBa0.5Sr0.5Co2O5+δ at 600°C [175]
NdBaFe2−xMnxO5+δ Pm-3m Cubic XRD 453 mW/cm2 at 700°C 114 S/cm in air at 550°C [176]
PrBa1−xCo2O5+δ
(x=0–0.1)
Pmmm Orthorhombic XRD [177]
SmBaCo2−xNixO5+δ (SBCNx) (x=0–0.5) Pmmm Orthorhombic XRD 536 mW/cm2 at 800°C 857–374 S/cm
for SBCN0.2
at 400°C–800°C
[178]
LnBaCoFeO5+δ
(Ln = Pr, Nd)
P4/mmm Tetragonal XRD 749 mW/cm2 for PBCF and
669 mW/cm2 for NBCF at 800°C
321 S/cm
for PBCF and
114 S/cm
for NBCF at 350°C
[179]
PrBaCo2O5.5 [180]
PrBaCo2−xCuxO5+δ Pmmm Orthorhombic XRD [181]
PrBaCo2O5+δ
(PBC)
I4/mmm Tetragonal XRD ≥100 S/cm for all tested temperatures [182]
NdBa0.5Sr0.5Co1.5Fe0.5O5+δ Pmmm Orthorhombic XRD 1.02 W/cm2 [182]
NdBaCo2/3F2/3Cu2/3O5+δ (NBCFC) P4/mmm Tetragonal XRD 736 mW/cm2 at 800°C 92 S/cm at 625°C [183]
GdBaFeNiO5+δ (GBFN) P4/mmm Tetragonal XRD 515 mW/cm2 at 800°C [184]
EuBa1−xCo2O6−δ (x=0, 0.02, 0.04) Pmmm Orthorhombic XRD 505 mW/cm2 at 700°C >150 S/cm [185]
PrBaCo2/3Fe2/3Cu2/3O5+δ (PBCFC) P4/mmm Tetragonal XRD 659 mW/cm2 at 800°C 144–113 S/cm between 600°C and 800°C [186]
Pr0.94BaCo2O6−δ Pmmm Orthorhombic XRD 1.05 W/cm2 at 600°C 400 S/cm at 100°C–750°C [187]
LnBaCoFeO5+δ (P(N)BCF, (Ln=Pr, Nd) P4/mmm Tetragonal XRD 960 mW/cm2 for PBCF–40SDC and 892 mW/cm2 for NBCF–30SDC at 800°C 92 S/cm for PBCF–40SDC and 107 S/cm for NBCF–30SDC at 375°C [188]
YBaCo2−xFexO5+δ (x=0, 0.2, 0.4, 0.6) Orthorhombic XRD For x=0,873 mW/cm2 at 800°C For x=0,>300 S/cm at 325°C [189]
SmBaCo2O5+x (SBCO) XRD 777 mW/cm2 at 800°C 815–434 S/cm
in 500°C–800°C
[190]
NdBaCu2O5+δ (NBCO), NdBa0.5Sr0.5Cu2O5+δ (NBSCO) XRD 16.87 S/cm and 51.92 S/cm at 560°C and 545°C [191]
SmBaCo2O5+δ (SBCO) XRD [192]
YBa0.5Sr0.5Co1.4Cu0.6O5+δ (YBSCC) Orthorhombic XRD 398 mW/cm2 at 850°C 174 S/cm at 350°C in air [193]
GdBa0.5Sr0.5Co2−xFexO5+δ (0≤x≤2) P4/mmm
(No. 123)
Tetragonal XRD 0.25 W/cm2 at 800°C 1000 S/cm at 400°C [194]
SmBaCo2O5+δ P4/mmm Tetragonal XRD 304 mW/cm2 at 700°C [195]
Y0.8Ca0.2BaCoFeO5+d (YCBCF) XRD 426 mW/cm2 at 650 °C [196]
NdBa1−xCo2O5+δ PmmmorNBC0, NBC5 (Pmmm), NBC10 (P4/mmm) Orthorhombic(NBC0), Orthorhombic(NBC5), Tetragonal (NBC10) XRD [197]
LnBaCo1.6Ni0.4O5+δ(Ln=Pr, Nd,Sm) P4/mmm (for PrBCN and NdBCN), Pmmm (for SmBCN) Tetragonal (for PrBCN and NdBCN), Orthorhombic (for SmBCN) XRD 732, 714, and 572 mW/cm2 for Ln=Pr, Nd, Sm at 800°C >235 S/cm between 300°C and 850°C [198]
La2−xSrxCoTiO6 (0.6≤x≤1.0) R-3c Rhombohedral XRD 13.23 S/cm at 800°C [199]
SmBa1–xCaxCoCuO5+δ (x=0–0.3) XRD 939 mW/cm2 at 800°C [200]
SrCo1−xMxO3−δ (M=Ti, V) P4/mmm Tetragonal XRD
and NPD
824 mW/cm2 for Mn+=Ti4+ (x=0.05) and 550 mW/cm2 for Mn+= V5+ (x=0.03) at 850°C above 80 S/cm for Mn+= Ti4+ and +8 S/cm for Mn+=V5 at 850°C [201]
SmBaCuCoO5+δ Orthorhombic XRD 355 mW/cm2 at 700°C [202]
LaBa1−xCo2O5+δ
(x=0–0.15)
P4/mmm Tetragonal XRD 280 S/cm between 150°C–850°C [203]
Sr2−xBaxFe1.5Mo0.5O6−δ (x=0,0.2,0.4,0.6, 0.8, 1.0) Cubic XRD 1.63 W/cm2 800°C 21.7 S/cm at 550°C [204]
GdBaCo2−xFexO6−δ (x=0,0.2) XRD 450 S/cm at 400°C [205]
LaSrMnCoO5+δ (LSMC) Cubic XRD 565 mW/cm2 at 800°C 140 S/cm at 850°C [206]
Sm1−xBaCo2O5+δ (x = 0 – 0.08) Pmmm Orthorhombic XRD 333 S/cm for x=0.05 at 800°C [207]
Sr2Fe1.4Co0.1Mo0.5O6−δ Cubic XRD 1.16 W/cm2 at 800°C 28 S/cm at 500°C [208]
PrBa0.92CoCuO6−δ Pmmm Orthorhombic XRD 1541 mW/cm2 at 800°C 134 S/cm at 800°C in air [169]
LnBaCo2O5+δ
(Ln=La, Pr, Nd,
Sm, Gd, Y)
Pmmm Orthorhombic XRD 120–350 S/cm, ~180°C in air and 50 to 100 S/cm at ~350°C in N2 [209]
La2−xSrxCoTiO6 P21/n (La2CoTiO6) and Pnma (La1.50Sr0.50CoTiO6) Monoclinic (La2CoTiO6) and orthorhombic (La1.50Sr0.50CoTiO6) NPD [210]
PrBa0.5Sr0.5CoCuO5+δ (PBSCCO) XRD 521 mW/cm2 at 800°C 483 S/cm at 325°C [211]
Nd1−xBaCo2O6−δ Pmmm Orthorhombic XRD 370 S/cm 0.6 W/cm2 at 700°C [212]
Sr2FeTi0.75Mo0.25O6−δ (SFTM) Pm3m Cubic XRD 2.31 S/cm at 500°C 394 mW/cm2 at 800°C [213]
YBa0.5Sr0.5Co2O5+δ
(YBSC)
XRD 650 mW/cm2 at 850°C 668 S/cm at 325°C [214]
SmSrCo2−xMnxO5+δ (SSCM, x=0, 0.2, 0.4, 0.6, 0.8, 1.0) Pbnm Orthorhombic XRD 1000 S/cm for x=0 [215]
PrBa0.5Sr0.5Co2O5+x(PBSC) XRD 1021 mW/cm2 at 800°C 581 S/cm at 850°C [216]
GdBaCo2/3Fe2/3Cu2/3O5+δ Pmmm Orthorhombic XRD 800 mW/cm2 at 800°C [217]
PrBaCo2−xScxO6−δ (PBCS, x=0–1.0) P4/mmm (for x=0–0.2), Pm-3m (for x=0.3–0.9) Tetragonal (for x=0–0.2), cubic (for x=0.3–0.9) XRD 140 S/cm for x=0.50 at 800°C [218]
PrBaCo2−xFexO5+δ (PBCF, x=0,0.5,1.0) XRD 0.70 W/cm2 at 700°C >3 S/cm at 750°C [219]
PrBaCo2O5+δ
(PBCO)
Orthorhombic XRD 866 mW/cm2 at 650°C [220]
GdBaCo2O5+x
(GBCO)
Pmmm Orthorhombic XRD 500 mW/cm2 at 800°C >30 S/cm at 750°C [221]
SmBa0.5Sr0.5Co2O5+δ (SBSC) Fluorite XRD 1147 mW/cm2 at 700°C [222]
Sr2Fe1.5Mo0.5O6−δ
(SFM)
Pnma Orthorhombic XRD 1102 mW/cm2 at 800°C ∼30 S/cm at 550°C [223]
NdBa0.5Sr0.5Co2O5+x Orthorhombic XRD 904 m/cm2 at 850°C 1368 S/cm at 100°C and 398 S/cm at 850°C [168]
Pr0.83BaCo1.33Sc0.5O6−δ–0.17PrCoO3
(PBCS-0.17PCO)
Pm-3m Cubic XRD 18 S/cm in 100°C–750°C [224]
PrBaCo2−xFexO5+δ (0≤x≤2) P4/mmm (for x=0, 0.2), Pm-3m (for
x=0.4,0.6,0.8,1.0,2.0)
Tetragonal (for x=0, 0.2), cubic (for x=0.4, 0.6,0.8,1.0,2.0) XRD 446.4 mW/cm2 for PBCF0.4 at 700°C 457.2 S/cm for PBCF0.4 [225]
YBaCo2−xCuxO5+δ
(x=0, 0.2,0.4,0.6,0.8)
Tetragonal XRD 816 mW/cm2 for x=0.6 at 850°C 43 S/cm for x=0.01 at 300°C [226]
SmBaCoCuO5+x
(SBCCO)
Orthorhombic XRD 517 mW/cm2 at 800°C 34 S/cm at 850°C [227]
LnBa0.5Sr0.5Co2O5+δ (Ln=Pr, Nd) P4/mmm Tetragonal XRD 240 S/cm and 131 S/cm in the temperature range (80°C–900°C) [228]
GdBaCo2−xNixO5+δ
(x = 0–0.8, cathode)
Pmmm Orthorhombic XRD [229]
PrBa0.5Sr0.5Co2−xFexO5+δ (PBSCF, x = 0.5, 1.0, 1.5) Pmmm Orthorhombic XRD 97 mW/cm2 for x=0.56 at 850°C 60–769 S/cm in 250°C–850°C [229]
Sr2Fe1−xCoxNbO6 (SFCN, 0.1≤x≤0.9) Tetragonal XRD 5.7 S/cm for SFCN09 at 800°C [230]
SmBa0.6Sr0.4Co2O5+δ P4/mmm Tetragonal XRD [231]
Tab.4  Various types of methods, space group, phase, conductivity and highest power density of double perovskite type cathode materials fabricated for SOFC
Fig.10  Cross-sectional SEM micrographs of the SOFC microstructure (adapted with permission from Ref. [21]).
Fig.11  Observed (red dots) and calculated (black line) XRD intensity profiles for SFTN0.05 at room temperature (The short vertical lines indicate the angular position of the allowed Bragg reflections. At the bottom, the difference plot (blue line), IobsIcalc, is shown. Insert shows the 3D schematic diagram, adapted with permission from Ref. [259].)
Fig.12  Electrical conductivity of the SSMM sample (0≤ x≤0.8) sintered at 1200 °C for 20 h (adapted with permission from Ref. [27]).
Fig.13  Power density and cell voltage as functions of current density in H2, dry CH4 and wet CH4 at 800 °C for Sr2CoMoO6d (adapted with permission from Ref. [68]).
1 S Sengodan, S Choi, A Jun, T H Shin, Y W Ju, H Y Jeong, J Shin, J T S Irvine, G Kim. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209
https://doi.org/10.1038/nmat4166
2 J M Andújar, F Segura. Fuel cells: history and updating. A walk along two centuries. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2309–2322
https://doi.org/10.1016/j.rser.2009.03.015
3 A M Abdalla, S Hossain, P M Petra, M Ghasemi, A K Azad. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Frontiers in Energy, 2018, 12(1): 1–24
https://doi.org/10.1007/s11708-018-0546-2
4 A M Abdalla, S Hossain, O B Nisfindy, A T Azad, M Dawood, A K Azad. Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Conversion and Management, 2018, 165: 602–627
https://doi.org/10.1016/j.enconman.2018.03.088
5 S Wang, S P Jiang. Prospects of fuel cell technologies. National Science Review, 2017, 4(2): 163–166
6 J Garche, L Ju rissen. Applications of fuel cell technology: status and perspectives. Electrochemical Society Interface, 2015, 24(2): 39–43
https://doi.org/10.1149/2.F02152if
7 U.S. Department of Energy. Fuel cell technologies office. 2015, available at energy.gov website
8 P L C Johnson Matthey. Fuel cell applications–fuel cell today. 2018-11-22, available at fuelcelltoday.com webite
9 Financial Times. Japan is betting future cars will use hydrogen fuel cells. 2018-03-27, available at ft.com website
10 Nissan Motor Corporation. Runnig on e-Bio: Nissan’s solid oxide fuel cell system. 2016-06-14, available at nissan-global.com website
11 INSIDEEVS. Navigant: fuel cell vehicle sales to exceed 228000 units by 2024. 2015-12-27, available at insideevs.com website
12 S M C Ang, E S Fraga, N P Brandon, N J Samsatli, D J L Brett. Fuel cell systems optimisation–methods and strategies. International Journal of Hydrogen Energy, 2011, 36(22): 14678–14703
https://doi.org/10.1016/j.ijhydene.2011.08.053
13 A B Stambouli, E Traversa, A Stambouli. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455
https://doi.org/10.1016/S1364-0321(02)00014-X
14 N Laosiripojana, W Wiyaratn, W Kiatkittipong, A Arpornwichanop, A Soottitantawat, S Assabumrungrat. Reviews on solid oxide fuel cell technology. Engineering Journal (New York), 2009, 13(1): 65–84
https://doi.org/10.4186/ej.2009.13.1.65
15 N Q Minh. Solid oxide fuel cell technology-features and applications. Solid State Ionics, 2004, 174(1-4): 271–277
https://doi.org/10.1016/j.ssi.2004.07.042
16 C Bao, Y Wang, D L Feng, Z Jiang, X Zhang. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system. Progress in Energy and Combustion Science, 2018, 66: 83–140
https://doi.org/10.1016/j.pecs.2017.12.002
17 V Rits, S Kypreos, A Wokaun. Evaluating the diffusion of fuel-cell cars in the China markets. IATSS Research, 2004, 28(1): 34–46
https://doi.org/10.1016/S0386-1112(14)60090-X
18 Venture Radar. SOFC | Venture Radar Search. 2018, available at ventureradar.com website
19 Business Wire.Top emerging trends in the global solid oxide fuel cell market| Technavio. 2018-04-04, available at businesswire.com website
20 Markets and Markets. Solid oxide fuel cell market by type (planar and tubular), application (power generation, combined heat & power, and military), end-use (data centers, commercial & retail, and APU), region (north America, Asia Pacific, and Europe)–global forecast to 2025. 2017, available at marketsandmarkets.com website
21 A M Abdalla, S Hossain, J Zhou, P M I Petra, S Erikson, C D Savaniu, J T S Irvine, A K Azad. NdBaMn2O5+d layered perovskite as an active cathode material for solid oxide fuel cells. Ceramics International, 2017, 43(17): 15932–15938
https://doi.org/10.1016/j.ceramint.2017.08.170
22 H A Taroco, J A F Santos, R Z Domingues, T Matencio . Ceramic materials for solid oxide fuel cells. 2011, available at intechopen.com website
23 S Sengodan, S Choi, A Jun, T H Shin, Y W Ju, H Y Jeong, J Shin, J T S Irvine, G Kim. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209
https://doi.org/10.1038/nmat4166
24 Q Liu, X Dong, G Xiao, F Zhao, F Chen. A Novel electrode material for symmetrical SOFCs. Advanced Materials, 2010, 22(48): 5478–5482
https://doi.org/10.1002/adma.201001044
25 Y H Huang. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257
https://doi.org/10.1126/science.1125877
26 A Atkinson, S Barnett, R J Gorte, J T S Irvine, A J McEvoy, M Mogensen, S C Singhal, J Vohs. Advanced anodes for high-temperature fuel cells. Nature Materials, 2004, 3(1): 17–27
https://doi.org/10.1038/nmat1040
27 L Zhang, T He. Performance of double-perovskite Sr2–xSmxMgMoO6–d as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359
https://doi.org/10.1016/j.jpowsour.2011.06.064
28 B C Steele, A Heinzel. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352
https://doi.org/10.1038/35104620
29 S C Singhal. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 2002, 152–153: 405–410
https://doi.org/10.1016/S0167-2738(02)00349-1
30 Z Shao, S M Haile. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170–173
https://doi.org/10.1038/nature02863
31 D Han, X Liu, F Zeng, J Qian, T Wu, Z Zhan. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Scientific Reports, 2012, 2(1): 462
https://doi.org/10.1038/srep00462
32 E P Murray, T Tsai, S A Barnett. A direct-methane fuel cell with a ceria-based anode. Nature, 1999, 400(6745): 649–651
https://doi.org/10.1038/23220
33 S Park, J Vohs, R Gorte. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267
https://doi.org/10.1038/35005040
34 S McIntosh, R J Gorte. Direct hydrocarbon solid oxide fuel cells. Chemical Reviews, 2004, 104(10): 4845–4866
https://doi.org/10.1021/cr020725g
35 A M Abdalla, S Hossain, A T Azad, P M I Petra, F Begum, S G Eriksson, A K Azad. Nanomaterials for solid oxide fuel cells: a review. Renewable & Sustainable Energy Reviews, 2018, 82: 353–368
https://doi.org/10.1016/j.rser.2017.09.046
36 Safran. Fuel cells: green energy on board. 2018-11-22, available at safran-group.com website
37 M S Reza, A Ahmed, W Caesarendra, M S Abu Bakar, S Shams, R Saidur, N Aslfattahi, A K Azad. Acacia holosericea: an invasive species for bio-char, bio-oil, and biogas production. Bioengineering Multidisciplinary Digital Publishing Institute, 2019, 6(2): 33
https://doi.org/10.3390/bioengineering6020033
38 Justin Fitzgerald and Nancy O’Bryan. NASA– Fuel cells: a better energy source for earth and space. 2005-11-02, available at nasa.gov website
39 S Singhal. Advances in solid oxide fuel cell technology. Solid State Ionics, 2000, 135(1–4): 305–313
https://doi.org/10.1016/S0167-2738(00)00452-5
40 S W Tao, J T S Irvine. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Advanced Materials, 2006, 18(12): 1581–1584
https://doi.org/10.1002/adma.200502098
41 N Radenahmad, A Afif, P I Petra, S M H Rahman, S G Eriksson, A K Azad. Proton-conducting electrolytes for direct methanol and direct urea fuel cells–a state-of-the-art review. Renewable & Sustainable Energy Reviews, 2016, 57: 1347–1358
https://doi.org/10.1016/j.rser.2015.12.103
42 L Malavasi, C A J Fisher, M S Islam. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chemical Society Reviews, 2010, 39(11): 4370–4387
https://doi.org/10.1039/b915141a
43 S Hossain, A M Abdalla, S N B Jamain, J H Zaini, A K Azad. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 2017, 79: 750–764
https://doi.org/10.1016/j.rser.2017.05.147
44 M Liu, M E Lynch, K Blinn, F M Alamgir, Y M Choi. Rational SOFC material design: new advances and tools. Materials Today, 2011, 14(11): 534–546
https://doi.org/10.1016/S1369-7021(11)70279-6
45 M Cologna. Advances in the production of planar and micro-tubular solid oxide fuel cells. Dissertation for the Doctoral Degree. Trento: University of Trento
46 A B Stambouli, E Traversa. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455
https://doi.org/10.1016/S1364-0321(02)00014-X
47 C E Hatchwell, N M Sammes, K Kendall. Cathode current-collectors for a novel tubular SOFC design. Journal of Power Sources, 1998, 70(1): 85–90
https://doi.org/10.1016/S0378-7753(97)02693-1
48 National Energy Technology Laboratory. Solid oxide fuel cell. 2018-11-26, available at netl.doe.gov website
49 Vaillant unveils wall-mounted CHP unit, using staxera SOFC. Fuel Cells Bulletin, 2011, 5: 4
https://doi.org/10.1016/S1464-2859(11)70138-9
50 J Kupecki. Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. International Journal of Hydrogen Energy, 2015, 40(35): 12009–12022
https://doi.org/10.1016/j.ijhydene.2015.06.031
51 SOLID power. For private households–SOLID power. 2018-11-26, available at solidpower.com website
52 M A Peña, J L G Fierro. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018
https://doi.org/10.1021/cr980129f
53 R J Cava, B Batlogg, J J Krajewski, R Farrow, L W Rupp, A E White, K Short, W F Peck, T Kometani. Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature, 1988, 332(6167): 814–816
https://doi.org/10.1038/332814a0
54 Z Zhang, J Li, W Zhou, C Yang, Q Cao, D Wang, Y Du. Mechanism of enhancement in magnetoresistance properties of manganite perovskite ceramics by current annealing. Ceramics International, 2018, 44(4): 3760–3764
https://doi.org/10.1016/j.ceramint.2017.11.159
55 S Afroze, A N Binti Haji Bakar, M S Reza, M A Salam. Polyvinylidene fluoride (PVDF) piezoelectric energy harvesting from rotary retracting mechanism: imitating forearm motion. IET Conference Publications, 2018
56 D G Schlom, L Q Chen, X Pan, A Schmehl, M A Zurbuchen. A thin film approach to engineering functionality into oxides. Journal of the American Ceramic Society, 2008, 91(8): 2429–2454
https://doi.org/10.1111/j.1551-2916.2008.02556.x
57 A J Locock, R H Mitchell. Perovskite classification: an excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup. Computers & Geosciences, 2018, 113: 106–114
https://doi.org/10.1016/j.cageo.2018.01.012
58 R Li, C Yu, S Shen. Partial oxidation of methane to syngas using lattice oxygen of La1–xSrxFeO3 perovskite oxide catalysts instead of molecular oxygen. Journal of Natural Gas Chemistry, 2002, 11: 137–144
59 E El-Ads. Perovskite nanomaterials–synthesis, characterization, and applications. InTech, 2016: 107–151
60 A K Azad. Synthesis, structure, and magnetic properties of double perovskites of the type A2MnBO6 and A2FeBO6 (A= Ca, Sr, Ba, La; B= W, Mo, Cr). 2004, available at lib.ugent.be website
61 A K Azad, A Mellergård, S G Eriksson, S A Ivanov, J Eriksen, H Rundlöf. Preparation, crystal and magnetic structure of the double perovskite Ba2FeWO6. Applied Physics A: Materials Science & Processing, 2002, 74(Sup.1): s763–s765
https://doi.org/10.1007/s003390101151
62 A Azad, S G Eriksson. Formation of a cubic Sr2MnWO6 phase at elevated temperature: a neutron powder diffraction study. Solid State Communications, 2003, 126(9): 503–508
https://doi.org/10.1016/S0038-1098(03)00280-1
63 A Azad, S G Eriksson, S Ivanov, R Mathieu, P Svedlindh, J Eriksen, H Rundlöf. Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A=Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1–2): 77–82
https://doi.org/10.1016/S0925-8388(03)00611-X
64 A K Azad, S Ivanov, S G Eriksson, H Rundlöf, J Eriksen, R Mathieu, P Svedlindh. Structural and magnetic properties of the double perovskite Sr2MnWO6. Journal of Magnetism and Magnetic Materials, 2001, 237(2): 124–134
https://doi.org/10.1016/S0304-8853(01)00501-7
65 A K Azad, S A Ivanov, S G Eriksson, J Eriksen, H Rundlöf, R Mathieu, P Svedlindh. Nuclear and magnetic structure of Ca2MnWO6: a neutron powder diffraction study. Materials Research Bulletin, 2001, 36(13–14): 2485–2496
https://doi.org/10.1016/S0025-5408(01)00708-5
66 A K Azad, S G Eriksson, S A Ivanov, H Rundlöf, J Eriksen, R Mathieu, P Svedlindh. Structural and magnetic characterisation of the double perovskites AA′MnWO6 (AA′ = Ba2, SrBa, Sr2, SrCa and Ca2). Ferroelectrics, 2002, 269(1): 105–110
https://doi.org/10.1080/00150190211167
67 Y H Huang, R I Dass, Z L Xing, J B Goodenough. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257
https://doi.org/10.1126/science.1125877
68 P Zhang, Y H Huang, J G Cheng, Z Q Mao, J B Goodenough. Sr2CoMoO6 anode for solid oxide fuel cell running on {H2} and {CH4} fuels. Journal of Power Sources, 2011, 196(4): 1738–1743
https://doi.org/10.1016/j.jpowsour.2010.10.007
69 G Xiao, Q Liu, X Dong, K Huang, F Chen. Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8071–8074
https://doi.org/10.1016/j.jpowsour.2010.07.036
70 D Marrero-López, J Peña-Martínez, J C Ruiz-Morales, D Pérez-Coll, M A G Aranda, P Núñez. Synthesis, phase stability and electrical conductivity of Sr2MgMoO6-d anode. Materials Research Bulletin, 2008, 43(8–9): 2441–2450
https://doi.org/10.1016/j.materresbull.2007.07.032
71 C Bernuy-Lopez, M Allix, C A Bridges, J B Claridge, M J Rosseinsky. Sr2MgMoO6-d: structure, phase stability, and cation site order control of reduction. Chemistry of Materials, 2007, 19(5): 1035–1043
https://doi.org/10.1021/cm0624116
72 S Vasala, M Lehtimäki, Y H Huang, H Yamauchi, J B Goodenough, M Karppinen. Degree of order and redox balance in B-site ordered double-perovskite oxides, Sr2MMoO6-d (M=Mg, Mn, Fe, Co, Ni, Zn). Journal of Solid State Chemistry, 2010, 183(5): 1007–1012
https://doi.org/10.1016/j.jssc.2010.03.004
73 F Azizi, A Kahoul, A Azizi. Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium. Journal of Alloys and Compounds, 2009, 484(1–2): 555–560
https://doi.org/10.1016/j.jallcom.2009.04.143
74 Y H Huang, R I Dass, J C Denyszyn, J B Goodenough. Synthesis and characterization of Sr2MgMoO6-d : an anode material for the solid oxide fuel cell. Journal of the Electrochemical Society, 2006, 153(7): A1266–A1272
https://doi.org/10.1149/1.2195882
75 Z Xie, H Zhao, Z Du, T Chen. Effects of Co doping on the electrochemical performance of double perovskite oxide Sr2MgMoO6-d as an anode material for solid oxide fuel cells. Journal of Physical Chemistry, 2012, 116: 9734–9743
76 X Pan, Z Wang, B He, S Wang, X Wu, C Xia. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell. International Journal of Hydrogen Energy, 2013, 38(10): 4108–4115
https://doi.org/10.1016/j.ijhydene.2013.01.121
77 Z Xie, H Zhao, T Chen, X Zhou, Z Du. Synthesis and electrical properties of Al-doped Sr2MgMoO6–d as an anode material for solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(12): 7257–7264
https://doi.org/10.1016/j.ijhydene.2011.03.075
78 V M Goldschmidt. Die Gesetze der Krystallochemie. Naturwissenschaften, 1926, 14(21): 477–485
https://doi.org/10.1007/BF01507527
79 R D Shannon. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallographica, 1976, 32(5): 751–767
https://doi.org/10.1107/S0567739476001551
80 A V G Rebaza, C E D Toro, D A L Téllez, J Roa-Rojas. Electronic structure of the double perovskite Ba2Er(Nb,Sb)O6. Journal of Physics: Conference Series, 2014, 480: 012041
https://doi.org/10.1088/1742-6596/480/1/012041
81 W T Fu, D J W IJdo. X-ray and neutron powder diffraction study of the double perovskites Ba2LnSbO6 (Ln=La, Pr, Nd and Sm). Journal of Solid State Chemistry, 2005, 178(7): 2363–2367
https://doi.org/10.1016/j.jssc.2005.05.021
82 J Gopalakrishnan, A Chattopadhyay, SB Ogale, T Venkatesan, R L Greene, A J Millis, K Ramesha, B Hannoyer, G Marest. Metallic and nonmetallic double perovskites : a case study of A2FeReO6 (A= Ca, Sr, Ba). 2000, 62(14): 9538–9542
https://doi.org/10.1103/PhysRevB.62.9538
83 M J Davis, S J Mugavero III, K I Glab, M D Smith, H C zur Loye. The crystal growth and characterization of the lanthanide-containing double perovskites Ln2NaIrO6 (Ln=La, Pr, Nd). Solid State Sciences, 2004, 6(5): 413–417
https://doi.org/10.1016/j.solidstatesciences.2004.02.005
84 K Yamamura, M Wakeshima, Y Hinatsu. Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M=W, Re, Os). Journal of Solid State Chemistry, 2006, 179(3): 605–612
https://doi.org/10.1016/j.jssc.2005.10.003
85 R Gens, J Fuger, L R Morss, C W Williams. Thermodynamics of actinide perovskite-type oxides III. Molar enthalpies of formation of B2MAnO6 (M=Mg, Ca, or Sr; An=U, Np, or Pu) and M3PuO6 (M=Ba or Sr). Journal of Chemical Thermodynamics, 1985, 17(6): 561–573
https://doi.org/10.1016/0021-9614(85)90055-2
86 W T Fu, D J W IJdo. Re-examination of the structure of Ba2MIrO6 (M= La, Y): space group revised. Journal of Alloys and Compounds, 2005, 394(1–2): 10–13
87 C Bharti, T P Sinha. Dielectric properties of rare earth double perovskite oxide Sr2CeSbO6. Solid State Sciences, 2010, 12(4): 498–502
https://doi.org/10.1016/j.solidstatesciences.2009.12.014
88 R Shaheen, J Bashir. Ca2CoNbO6: a new monoclinically distorted double perovskite. Solid State Sciences, 2010, 12(8): 1496–1499
https://doi.org/10.1016/j.solidstatesciences.2010.06.015
89 W R Gemmill, M D Smith, H C zur Loye. Synthesis, structural characterization, and magnetic properties of the antiferromagnetic double perovskites Ln2LiOsO6 (Ln=La, Pr, Nd, Sm). Journal of Solid State Chemistry, 2006, 179(6): 1750–1756
https://doi.org/10.1016/j.jssc.2006.03.010
90 Y Zhang, V Ji. Half-metallic ferromagnetic nature of the double perovskite Pb2FeMoO6 from first-principle calculations. Journal of Physics and Chemistry of Solids, 2012, 73(9): 1116–1121
https://doi.org/10.1016/j.jpcs.2012.05.012
91 S J Mugavero III, M D Smith, H C zur Loye. The crystal growth and magnetic properties of Ln2LiIrO6 (Ln=La, Pr, Nd, Sm, Eu). Journal of Solid State Chemistry, 2005, 178(1): 200–206
https://doi.org/10.1016/j.jssc.2004.10.033
92 Q Zhou, B J Kennedy, C J Howard, M M Elcombe, A J Studer. Structural phase transitions in A2–xSrxNiWO6 (A= Ca or Ba, 0≤x≤2) double perovskites. Chemistry of Materials, 2005, 17(21): 5357–5365
https://doi.org/10.1021/cm050900k
93 A Azad, S G Eriksson, S Ivanov, R Mathieu, P Svedlindh, J Eriksen, H Rundlöf. Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A=Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1-2): 77–82
https://doi.org/10.1016/S0925-8388(03)00611-X
94 R Strandbakke, V A Cherepanov, A Y Zuev, D S Tsvetkov, C Argirusis, G Sourkouni, S Prünte, T Norby. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics, 2015, 278: 120–132
https://doi.org/10.1016/j.ssi.2015.05.014
95 J B Philipp, P Majewski, L Alff, A Erb, R Gross, T Graf, M S Brandt, J Simon, T Walther, W Mader, D Topwal, D D Sarma. Structural and doping effects in the half-metallic double perovskite A2CrWO6. Physical Review. B, 2003, 68(14): 144431
https://doi.org/10.1103/PhysRevB.68.144431
96 G Popov, M Greenblatt, M Croft. Large effects of A-site average cation size on the properties of the double perovskites Ba2-xSrx MnReO6 : a d5-d1 system. Physical Review. B, 2003, 67(2): 024406
https://doi.org/10.1103/PhysRevB.67.024406
97 W Westerburg, O Lang, C Ritter, C Felser, W Tremel, G Jakob. Magnetic and structural properties of the double-perovskite Ca2FeReO6. Solid State Communications, 2002, 122(3–4): 201–206
https://doi.org/10.1016/S0038-1098(02)00079-0
98 H Falcón, J A Barbero, G Araujo, M T Casaisc, M J Martı́nez-Lope, J A Alonso, J L G Fierro. Double perovskite oxides A2FeMoO6-d (A=Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45
https://doi.org/10.1016/j.apcatb.2004.05.004
99 M Retuerto, J A Alonso, M García-Hernández, M J Martínez-Lope. Synthesis, structure and magnetic properties of the new double perovskite Ca2CrSbO6. Solid State Communications, 2006, 139(1): 19–22
https://doi.org/10.1016/j.ssc.2006.05.011
100 R Hu, R Ding, J Chen, J Hu, Y Zhang. Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion. Catalysis Communications, 2012, 21: 38–41
https://doi.org/10.1016/j.catcom.2012.01.008
101 M A Peña, J L G Fierro. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018
https://doi.org/10.1021/cr980129f
102 D Parfitt, A Chroneos, A Tarancón, J A Kilner. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+d. Journal of Materials Chemistry, 2011, 21(7): 2183–2186
https://doi.org/10.1039/C0JM02924F
103 S Presto, P Kumar, S Varma, M Viviani, P Singh. Electrical conductivity of NiMo–based double perovskites under SOFC anodic conditions. International Journal of Hydrogen Energy, 2018, 43(9): 4528–4533
https://doi.org/10.1016/j.ijhydene.2018.01.066
104 D Fu, F Jin, T He. A-site calcium-doped Pr1-xCaxBaCo2O5+d double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141
https://doi.org/10.1016/j.jpowsour.2016.02.071
105 M T Anderson, K B Greenwood, G A Taylor, K Poeppelmeier. B-cation arrangements in double perovskites. Progress in Solid State Chemistry, 1993, 22(3): 197–233
https://doi.org/10.1016/0079-6786(93)90004-B
106 D Serrate, J M De Teresa, P A Algarabel, C Marquina, J Blasco, M R Ibarra, J Galibert. Magnetoelastic coupling in Sr2(Fe1-xCrx)ReO6 double perovskites. Journal of Physics Condensed Matter, 2007, 19(43): 436226
https://doi.org/10.1088/0953-8984/19/43/436226
107 A Y Suntsov, I A Leonidov, M V Patrakeev, V L Kozhevnikov. Defect formation in double perovskites PrBaCo2-xCuxO5+d at elevated temperatures. Solid State Ionics, 2015, 274: 17–23
https://doi.org/10.1016/j.ssi.2015.02.004
108 B Niu, F Jin, X Yang, T Feng, T He. Resisting coking and sulfur poisoning of double perovskite. 2018, 43(6): 3280–3290
https://doi.org/10.1016/j.ijhydene.2017.12.134
109 J H Kim, A Manthiram. Layered NdBaCo2-xNixO5+d perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2009, 54(28): 7551–7557
https://doi.org/10.1016/j.electacta.2009.08.021
110 G Blasse. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003
https://doi.org/10.1016/0022-1902(65)80409-2
111 P D Battle, C W Jones. The crystal and magnetic structures of Sr2LuRuO6, Ba2YRuO6, and Ba2LuRuO6. Journal of Solid State Chemistry, 1989, 78(1): 108–116
https://doi.org/10.1016/0022-4596(89)90133-3
112 A K Azad, S A Ivanov, S G Eriksson, J Eriksen, H Rundlöf, R Mathieu, P Svedlindh. Synthesis, crystal structure, and magnetic characterization of the double perovskite Ba2MnWO6. Materials Research Bulletin, 2001, 36(12): 2215–2228
https://doi.org/10.1016/S0025-5408(01)00707-3
113 A K Azad, S G Eriksson, A Mellergård, S A Ivanov, J Eriksen, H Rundlöf. A study on the nuclear and magnetic structure of the double perovskites A2FeWO6 (A= Sr, Ba) by neutron powder diffraction and reverse Monte Carlo modeling. Materials Research Bulletin, 2002, 37(11): 1797–1813
https://doi.org/10.1016/S0025-5408(02)00872-3
114 M T Anderson, K R Poeppelmeier. La2CuSnO6: a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482
https://doi.org/10.1021/cm00015a022
115 A M Glazer. The classification of tilted octahedra in perovskites. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1972, 28(11): 3384–3392
https://doi.org/10.1107/S0567740872007976
116 G Blasse. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003
https://doi.org/10.1016/0022-1902(65)80409-2
117 W Prellier, V Smolyaninova, A Biswas, C Galley, R L Greene, K Ramesha, J Gopalakrishnan. Properties of the ferrimagnetic double perovskites A2FeReO6 (A= Ba and Ca). Journal of Physics Condensed Matter, 2000, 12(6): 965–973
https://doi.org/10.1088/0953-8984/12/6/318
118 M T Anderson, K R Poeppelmeier. Lanthanum copper tin oxide (La2CuSnO6): a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482
https://doi.org/10.1021/cm00015a022
119 A K Azad, F Basheer, P M Iskandar Petra, A Ghosh, J T S Irvine. Structure-property relationship in Mg-doped La0.75Sr0.25Mn0.5 Cr0.5O3 anode for solid oxide fuel cell. In: 5th Brunei International Conference on Engineering and Technology (BICET 2014), Bandar Seri Begawan, Brunei, 2014: 1115
120 Y Wang, H Zhang, F Chen, C Xia. Electrochemical characteristics of nano-structured PrBaCo2O5+x cathodes fabricated with ion impregnation process. Journal of Power Sources, 2012, 203: 34–41
https://doi.org/10.1016/j.jpowsour.2011.11.069
121 A Ghosh, A K Azad, J T S Irvine. Study of Ga doped LSCM as an anode for SOFC. ECS Transactions, 2011, 35(1): 1337–1343
122 S P S Shaikh, A Muchtar, M R Somalu. A review on the selection of anode materials for solid-oxide fuel cells. Renewable & Sustainable Energy Reviews, 2015, 51: 1–8
https://doi.org/10.1016/j.rser.2015.05.069
123 C Xia, M Liu. Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs. Solid State Ionics, 2002, 152–153: 423–430
https://doi.org/10.1016/S0167-2738(02)00381-8
124 D J L Brett, A Atkinson, N P Brandon, S J Skinner. Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 2008, 37(8): 1568
https://doi.org/10.1039/b612060c
125 S Park, J M Vohs, R J Gorte. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267
https://doi.org/10.1038/35005040
126 R J Gorte, J M Vohs. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis, 2003, 216(1–2): 477–486
https://doi.org/10.1016/S0021-9517(02)00121-5
127 B Shri Prakash, S Senthil Kumar, S T Aruna. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renewable & Sustainable Energy Reviews, 2014, 36: 149–179
https://doi.org/10.1016/j.rser.2014.04.043
128 Y Huan, Y Li, B Yin, D Ding, T Wei. High conductive and long-term phase stable anode materials for SOFCs: A2FeMoO6 (A= Ca, Sr, Ba). Journal of Power Sources, 2017, 359: 384–390
https://doi.org/10.1016/j.jpowsour.2017.05.079
129 K Zheng, K Świerczek, W Zając, A Klimkowicz. Rock salt ordered-type double perovskite anode materials for solid oxide fuel cells. Solid State Ionics, 2014, 257: 9–16
https://doi.org/10.1016/j.ssi.2014.01.030
130 M K Rath, K T Lee. Superior electrochemical performance of non-precious Co-Ni-Mo alloy catalyst-impregnated Sr2FeMoO6-d as an electrode material for symmetric solid oxide fuel cells. Electrochimica Acta, 2016, 212: 678–685
https://doi.org/10.1016/j.electacta.2016.07.037
131 L dos Santos-Gómez, L León-Reina, J M Porras-Vázquez, E R Losilla, D Marrero-López. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7
https://doi.org/10.1016/j.ssi.2013.03.005
132 P Kumar, S Presto, A S K Sinha, S Varma, M Viviani, P Singh. Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode material for SOFC. Journal of Alloys and Compounds, 2017, 725: 1123–1129
https://doi.org/10.1016/j.jallcom.2017.07.211
133 H Ding, Z Tao, S Liu, Y Yang. A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6-d double perovskite as anode material. Journal of Power Sources, 2016, 327: 573–579
https://doi.org/10.1016/j.jpowsour.2016.07.101
134 Y F Sun, Y Q Zhang, B Hua, Y Behnamian, J Li, S H Cui, J H Li, J L Luo. Molybdenum doped Pr0.5Ba0.5MnO3-d (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material. Journal of Power Sources, 2016, 301: 237–241
https://doi.org/10.1016/j.jpowsour.2015.09.127
135 A C Tomkiewicz, M A Tamimi, A Huq, S McIntosh. Structural analysis of PrBaMn2O5+d under SOFC anode conditions by in-situ neutron powder diffraction. Journal of Power Sources, 2016, 330: 240–245
https://doi.org/10.1016/j.jpowsour.2016.09.013
136 L Xu, Y M Yin, N Zhou, Z Wang, Z F Ma. Sulfur tolerant redox stable layered perovskite SrLaFeO4-d as anode for solid oxide fuel cells. Electrochemistry Communications, 2017, 76: 51–54
https://doi.org/10.1016/j.elecom.2017.01.017
137 F Y Wang, G B Zhong, S Luo, L Xia, L H Fang, X Song, X Hao, G Yan. Porous Sr2MgMo1–xVxO6–d ceramics as anode materials for SOFCs using biogas fuel. Catalysis Communications, 2015, 67: 108–111
https://doi.org/10.1016/j.catcom.2015.04.019
138 B He, Z Wang, L Zhao, X Pan, X Wu, C Xia. Ti-doped molybdenum-based perovskites as anodes for solid oxide fuel cells. Journal of Power Sources, 2013, 241: 627–633
https://doi.org/10.1016/j.jpowsour.2013.04.148
139 M J Escudero, I Gómez deParada, A Fuerte, L Daza. Study of Sr2Mg(Mo0.8Nb0.2)O6-d as anode material for solid oxide fuel cells using hydrocarbons as fuel. Journal of Power Sources, 2013, 243: 654–660
https://doi.org/10.1016/j.jpowsour.2013.05.198
140 Q Zhang, T Wei, Y H Huang. Electrochemical performance of double-perovskite Ba2MMoO6 (M=Fe, Co, Mn, Ni) anode materials for solid oxide fuel cells. Journal of Power Sources, 2012, 198: 59–65
https://doi.org/10.1016/j.jpowsour.2011.09.092
141 D Marrero-López, J Peña-Martínez, J C Ruiz-Morales, M C Martín-Sedeño, P Núñez. High temperature phase transition in SOFC anodes based on Sr2MgMoO6-d. Journal of Solid State Chemistry, 2009, 182(5): 1027–1034
https://doi.org/10.1016/j.jssc.2009.01.018
142 Z Han, Y Wang, Y Yang, L Li, Z Yang, M Han. High-performance SOFCs with impregnated Sr2Fe1.5Mo0.5O6−d anodes toward sulfur resistance. Journal of Alloys and Compounds, 2017, 703: 258–263
143 P Gansor, C Xu, K Sabolsky, J W Zondlo, E M Sabolsky. Phosphine impurity tolerance of Sr2MgMoO6-d composite SOFC anodes. Journal of Power Sources, 2012, 198: 7–13
https://doi.org/10.1016/j.jpowsour.2011.09.069
144 H Li, Y Zhao, Y Wang, Y Li. Sr2Fe2-xMoxO6-d perovskite as an anode in a solid oxide fuel cell: effect of the substitution ratio. Catalysis Today, 2016, 259: 417–422
https://doi.org/10.1016/j.cattod.2015.04.025
145 L Zhang, Q Zhou, Q He, T He. Double-perovskites A2FeMoO6-d (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366
https://doi.org/10.1016/j.jpowsour.2010.04.021
146 L Jiang, G Liang, J Han, Y Huang. Effects of Sr-site deficiency on structure and electrochemical performance in Sr2MgMoO6 for solid-oxide fuel cell. Journal of Power Sources, 2014, 270: 441–448
https://doi.org/10.1016/j.jpowsour.2014.07.079
147 D Marrero-López, J Peña-Martínez, J C Ruiz-Morales, M Gabás, P Núñez, M A G Aranda, J R Ramos-Barrado. Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6-d as SOFC anode. Solid State Ionics, 2010, 180(40): 1672–1682
https://doi.org/10.1016/j.ssi.2009.11.005
148 T G Howell, C P Kuhnell, T L Reitz, A M Sukeshini, R N Singh. {A2MgMoO6} (A= Sr,Ba) for use as sulfur tolerant anodes. Journal of Power Sources, 2013, 231: 279–284
https://doi.org/10.1016/j.jpowsour.2013.01.004
149 P Zhang, Y H Huang, J G Cheng, Z Q Mao, J B Goodenough. Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels. Journal of Power Sources, 2011, 196(4): 1738–1743
https://doi.org/10.1016/j.jpowsour.2010.10.007
150 S Vasala, M Lehtimäki, S C Haw, J M Chen, R S Liu, H Yamauchi, M Karppinen. Isovalent and aliovalent substitution effects on redox chemistry of Sr2MgMoO6-d SOFC-anode material. Solid State Ionics, 2010, 181(15–16): 754–759
https://doi.org/10.1016/j.ssi.2010.03.037
151 Q Liu, D E Bugaris, G Xiao, M Chmara, S Ma, H C zur Loye, M D Amiridis, F Chen. Sr2Fe1.5Mo0.5O6-d as a regenerative anode for solid oxide fuel cells. Journal of Power Sources, 2011, 196(22): 9148–9153
https://doi.org/10.1016/j.jpowsour.2011.06.085
152 A H Karim, K Y Park, T H Lee, S A Muhammed Ali, S Hossain, H Q H H Absah, J Y Park, A K Azad. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1-xTixNbO6-d as SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673
https://doi.org/10.1016/j.jallcom.2017.07.059
153 R Martínez-Coronado, A Aguadero, J A Alonso, M T Fernández-Díaz. Reversible oxygen removal and uptake in the La2ZnMnO6 double perovskite: performance in symmetrical SOFC cells. Solid State Sciences, 2013, 18: 64–70
https://doi.org/10.1016/j.solidstatesciences.2013.01.001
154 W Li, Y Cheng, Q Zhou, T Wei, Z Li, H Yan, Z Wang, X Han. Evaluation of double perovskite Sr2FeTiO6-d as potential cathode or anode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 2015, 41(9): 12393–12400
https://doi.org/10.1016/j.ceramint.2015.06.074
155 H Ding, N P Sullivan, S Ricote. Double perovskite Ba2FeMoO6-d as fuel electrode for protonic-ceramic membranes. Solid State Ionics, 2017, 306: 97–103
https://doi.org/10.1016/j.ssi.2017.04.007
156 K Zheng, K Świerczek, J Bratek, A Klimkowicz. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ionics, 2014, 262: 354–358
https://doi.org/10.1016/j.ssi.2013.11.009
157 Y Song, Q Zhong, W Tan, C Pan. Effect of cobalt-substitution Sr2Fe1.5-xCoxMo0.5O6-d for intermediate temperature symmetrical solid oxide fuel cells fed with H2-H2S. Electrochimica Acta, 2014, 139: 13–20
https://doi.org/10.1016/j.electacta.2014.07.022
158 A Tarancón, D Marrero-López, J Peña-Martínez, J Ruizmorales, P Nunez. Effect of phase transition on high-temperature electrical properties of GdBaCo2O5+x layered perovskite. Solid State Ionics, 2008, 179(17–18): 611–618
https://doi.org/10.1016/j.ssi.2008.04.028
159 Y Song, Q Zhong, D Wang, Y Xu, W Tan. Interaction between electrode materials Sr2FeCo0.5Mo0.5O6-d and hydrogen sulfide in symmetrical solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42(34): 22266–22272
https://doi.org/10.1016/j.ijhydene.2017.04.216
160 J H Wright, A V Virkar, Q Liu, F Chen. Electrical characterization and water sensitivity of Sr2Fe1.5Mo0.5O6-d as a possible solid oxide fuel cell electrode. Journal of Power Sources, 2013, 237: 13–18
https://doi.org/10.1016/j.jpowsour.2013.02.079
161 J H Kim, M Cassidy, J T S Irvine, J Bae. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5+d (Ln=Pr, Sm, and Gd) as cathode materials for IT-SOFC. Journal of the Electrochemical Society, 2009, 156(6): B682–B689
https://doi.org/10.1149/1.3110989
162 S M Haile. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000
https://doi.org/10.1016/j.actamat.2003.08.004
163 S P Jiang. Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources, 2003, 124(2): 390–402
https://doi.org/10.1016/S0378-7753(03)00814-0
164 S Carter, A Selcuk, R J Chater, J Kajda, J A Kilner, B C H Steele. Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ionics, 1992, 53–56: 597–605
https://doi.org/10.1016/0167-2738(92)90435-R
165 G Kim, S Wang, A J Jacobson, L Reimus, P Brodersen, C A Mims. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry, 2007, 17(24): 2500
https://doi.org/10.1039/b618345j
166 S Choi, C J Kucharczyk, Y Liang, X Zhang, I Takeuchi, H I Ji, S M Haile. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 2018, 3(3): 202–210
https://doi.org/10.1038/s41560-017-0085-9
167 C Sun, R Hui, J Roller. Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 2010, 14(7): 1125–1144
https://doi.org/10.1007/s10008-009-0932-0
168 S Lü, X Meng, Y Ji, C Fu, C Sun, H Zhao. Electrochemical performances of NdBa0.5Sr0.5Co2O5+x as potential cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8094–8096
https://doi.org/10.1016/j.jpowsour.2010.06.061
169 X Jiang, J Wang, G Jia, Z Qie, Y Shi, A Idrees, Q Zhang, L Jiang. Characterization of PrBa0.92CoCuO6–d as a potential cathode material of intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2017, 42(9): 6281–6289
https://doi.org/10.1016/j.ijhydene.2016.12.076
170 A C Tomkiewicz, M Meloni, S McIntosh. On the link between bulk structure and surface activity of double perovskite based SOFC cathodes. Solid State Ionics, 2014, 260: 55–59
https://doi.org/10.1016/j.ssi.2014.03.015
171 H Li, L P Sun, Q Li, T Xia, H Zhao, L H Huo, J M Bassat, A Rougier, S Fourcade, J C Grenier. Electrochemical performance of double perovskite Pr2NiMnO6 as a potential IT-SOFC cathode. International Journal of Hydrogen Energy, 2015, 40(37): 12761–12769
https://doi.org/10.1016/j.ijhydene.2015.07.133
172 X Mao, W Wang, G Ma. A novel cobalt-free double-perovskite NdBaFe1.9Nb0.1O5+d cathode material for proton-conducting IT-SOFC. Ceramics International, 2015, 41(8): 10276–10280
https://doi.org/10.1016/j.ceramint.2015.03.326
173 F J Jin, J Liu, B Niu, L Ta, R Li, Y Wang, X Yang, T He. Evaluation and performance optimization of double-perovskite LaSrCoTiO5+d cathode for intermediate-temperature solid-oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(46): 21439–21449
https://doi.org/10.1016/j.ijhydene.2016.08.059
174 D Fu, F Jin, T He. A-site calcium-doped Pr1–xCaxBaCo2O5+d double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141
https://doi.org/10.1016/j.jpowsour.2016.02.071
175 R Pelosato, G Cordaro, D Stucchi, C Cristiani, G Dotelli. Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: a brief review. Journal of Power Sources, 2015, 298: 46–67
https://doi.org/10.1016/j.jpowsour.2015.08.034
176 X Mao, T Yu, G Ma. Performance of cobalt-free double-perovskite NdBaFe2–xMnxO5+d cathode materials for proton-conducting IT-SOFC. Journal of Alloys and Compounds, 2015, 637: 286–290
https://doi.org/10.1016/j.jallcom.2015.02.001
177 S Pang, W Wang, T Chen, Y Wang, K Xu, X Shen, X Xi, J Fan. The effect of potassium on the properties of PrBa1-xCo2O5+d (x = 0.00–0.10) cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(31): 13705–13714
https://doi.org/10.1016/j.ijhydene.2016.05.060
178 L N Xia, Z P He, X W Huang, Y Yu. Synthesis and properties of SmBaCo2–xNixO5+d perovskite oxide for IT-SOFC cathodes. Ceramics International, 2016, 42(1): 1272–1280
https://doi.org/10.1016/j.ceramint.2015.09.062
179 F Jin, H Xu, W Long, Y Shen, T He. Characterization and evaluation of double perovskites LnBaCoFeO5+d (Ln= Pr and Nd) as intermediate-temperature solid oxide fuel cell cathodes. Journal of Power Sources, 2013, 243: 10–18
https://doi.org/10.1016/j.jpowsour.2013.05.187
180 I D Seymour, A Tarancón, A Chroneos, D Parfitt, J A Kilner, R W Grimes. Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites. Solid State Ionics, 2012, 216: 41–43
https://doi.org/10.1016/j.ssi.2011.09.002
181 A Y Suntsov, I A Leonidov, M V Patrakeev, V L Kozhevnikov. Defect formation in double perovskites PrBaCo2–xCuxO5+d at elevated temperatures. Solid State Ionics, 2015, 274: 17–23
https://doi.org/10.1016/j.ssi.2015.02.004
182 M Saccoccio, C Jiang, Y Gao, D Chen, F Ciucci. Nb-substituted PrBaCo2O5+d as a cathode for solid oxide fuel cells: a systematic study of structural, electrical, and electrochemical properties. International Journal of Hydrogen Energy, 2017, 42(30): 19204–19215
https://doi.org/10.1016/j.ijhydene.2017.06.056
183 F Jin, L Li, T He. NdBaCo2/3Fe2/3Cu2/3O5+d double perovskite as a novel cathode material for CeO2- and LaGaO3-based solid oxide fuel cells. Journal of Power Sources, 2015, 273: 591–599
https://doi.org/10.1016/j.jpowsour.2014.09.147
184 L Li, F Jin, Y Shen, T He. Cobalt-free double perovskite cathode GdBaFeNiO5+d and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2015, 182: 682–692
https://doi.org/10.1016/j.electacta.2015.09.146
185 S Li, T Xia, Q Li, L Sun, L Huo, H Zhao. A-site Ba-deficiency layered perovskite EuBa1–xCo2O6–d cathodes for intermediate-temperature solid oxide fuel cells: electrochemical properties and oxygen reduction reaction kinetics. International Journal of Hydrogen Energy, 2017, 42(38): 24412–24425
https://doi.org/10.1016/j.ijhydene.2017.08.049
186 F Jin, Y Shen, R Wang, T He. Double-perovskite PrBaCo2/3 Fe2/3Cu2/3O5+d as cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 234: 244–251
https://doi.org/10.1016/j.jpowsour.2013.01.172
187 F Meng, T Xia, J Wang, Z Shi, H Zhao. Praseodymium-deficiency Pr0.94BaCo2O6–d double perovskite: a promising high performance cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 293: 741–750
https://doi.org/10.1016/j.jpowsour.2015.06.007
188 F Jin, J Liu, Y Shen, T He. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+dSm0.2-Ce0.8O1.9 (Ln=Pr and Nd) composite cathodes for IT-SOFCs. Journal of Alloys and Compounds, 2016, 685: 483–491
https://doi.org/10.1016/j.jallcom.2016.05.322
189 J Xue, Y Shen, T He. Double-perovskites YBaCo2–xFexO5+d cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196(8): 3729–3735
https://doi.org/10.1016/j.jpowsour.2010.12.071
190 Q Zhou, T He, Y Ji. SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2008, 185(2): 754–758
https://doi.org/10.1016/j.jpowsour.2008.07.064
191 X Kong, G Liu, Z Yi, X Ding. NdBaCu2O5+d and NdBa0.5Sr0.5 Cu2O5+d layered perovskite oxides as cathode materials for IT-SOFCs. International Journal of Hydrogen Energy, 2015, 40(46): 16477–16483
https://doi.org/10.1016/j.ijhydene.2015.09.006
192 B Wei, K Chen, C C Wang, Z Lü, S P Jiang. Performance degradation of SmBaCo2O5+d cathode induced by chromium deposition for solid oxide fuel cells. Electrochimica Acta, 2015, 174: 327–331
https://doi.org/10.1016/j.electacta.2015.06.019
193 S Lü, B Yu, X Meng, Y Zhang, Y Ji, C Fu, L Yang, X Li, Y Sui, J Yang. Performance of double-perovskite YBa0.5Sr0.5Co1.4Cu0.6 O5+d as cathode material for intermediate-temperature solid oxide fuel cells. Ceramics International, 2014, 40(9, Part B): 14919–14925
https://doi.org/10.1016/j.ceramint.2014.06.088
194 C Kuroda, K Zheng, K Swierczek. Characterization of novel GdBa0.5Sr0.5Co2–xFexO5+d perovskites for application in IT-SOFC cells. International Journal of Hydrogen Energy, 2013, 38(2): 1027–1038
https://doi.org/10.1016/j.ijhydene.2012.10.085
195 A Subardi, C C Chen, M H Cheng, W K Chang, Y P Fu. Electrical, thermal and electrochemical properties of SmBa1-xSrxCo2O5+d cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2016, 204: 118–127
https://doi.org/10.1016/j.electacta.2016.04.069
196 L Yu, Y Chen, Q Gu, D Tian, X Lu, G Meng, B Lin. Layered perovskite oxide Y0.8Ca0.2BaCoFeO5+d as a novel cathode material for intermediate-temperature solid oxide fuel cells. Journal of Rare Earths, 2015, 33(5): 519–523 (in Chinese)
https://doi.org/10.1016/S1002-0721(14)60450-6
197 A Donazzi, R Pelosato, G Cordaro, D Stucchi, C Cristiani, G Dotelli, I N Sora. Evaluation of Ba deficient NdBaCo2O5+d oxide as cathode material for IT-SOFC. Electrochimica Acta, 2015, 182: 573–587
https://doi.org/10.1016/j.electacta.2015.09.117
198 X Che, Y Shen, H Li, T He. Assessment of LnBaCo1.6Ni0.4O5+d (Ln= Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 222: 288–293
https://doi.org/10.1016/j.jpowsour.2012.08.044
199 J C Pérez-Flores, A Gómez-Pérez, M Yuste, J Canales-Vázquez, E Climent-Pascual, C Ritter, M T Azcondo, U Amador, F García-Alvarado. Characterization of La2–xSrxCoTiO6 (0.6≤x≤1.0) series as new cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(10): 5440–5450
https://doi.org/10.1016/j.ijhydene.2014.01.058
200 W Wang, S Pang, Y Su, X Shen, Y Wang, K Xu, X Xi, J Xiang. The effect of calcium on the properties of SmBa1-xCaxCoCuO5+d as a cathode material for intermediate-temperature solid oxide fuel cells. Journal of the European Ceramic Society, 2017, 37(4): 1557–1562
https://doi.org/10.1016/j.jeurceramsoc.2016.12.017
201 V Cascos, L Troncoso, J A Alonso. New families of Mn+-doped SrCo1–xMxO3–d perovskites performing as cathodes in solid-oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40(34): 11333–11341
https://doi.org/10.1016/j.ijhydene.2015.03.134
202 Z Zhu, Z Tao, L Bi, W Liu. Investigation of SmBaCuCoO5+d double-perovskite as cathode for proton-conducting solid oxide fuel cells. Materials Research Bulletin, 2010, 45(11): 1771–1774
https://doi.org/10.1016/j.materresbull.2010.06.059
203 S L Pang, X N Jiang, X N Li, H X Xu, L Jiang, Q L Xu, Y C Shi, Q Y Zhang. Structure and properties of layered-perovskite LaBa1–x Co2O5+d (x=0–0.15) as intermediate-temperature cathode material. Journal of Power Sources, 2013, 240: 54–59
https://doi.org/10.1016/j.jpowsour.2013.04.005
204 N Dai, Z Wang, T Jiang, J Feng, W Sun, J Qiao, D Rooney, K Sun. A new family of barium-doped Sr2Fe1.5Mo0.5O6-d perovskites for application in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 268: 176–182
https://doi.org/10.1016/j.jpowsour.2014.05.146
205 N S Tsvetkova, A Y Zuev, D S Tsvetkov. Investigation of GdBaCo2–xFexO6-d (x = 0, 0.2)-Ce0.8Sm0.2O2 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2013, 243: 403–408
https://doi.org/10.1016/j.jpowsour.2013.06.036
206 Q Zhou, W C J Wei, Y Guo, D Jia. LaSrMnCoO5+d as cathode for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 2012, 19: 36–38
https://doi.org/10.1016/j.elecom.2012.03.001
207 X Jiang, Q Xu, Y Shi, X Li, W Zhou, H Xu, Q Zhang. Synthesis and properties of Sm3+-deficient Sm1-xBaCo2O5+d perovskite oxides as cathode materials. International Journal of Hydrogen Energy, 2014, 39(21): 10817–10823
https://doi.org/10.1016/j.ijhydene.2014.04.203
208 S Zhen, W Sun, G Tang, D Rooney, K Sun, X Ma. Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6–d-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes. International Journal of Hydrogen Energy, 2016, 41(22): 9538–9546
https://doi.org/10.1016/j.ijhydene.2016.04.094
209 K Zhang, L Ge, R Ran, Z Shao, S Liu. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+d as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56(17): 4876–4889
https://doi.org/10.1016/j.actamat.2008.06.004
210 A Gómez-Pérez, M Yuste, J C Pérez-Flores, C Ritter, M T Azcondo, J Canales-Vázquez, M Gálvez-Sánchez, K Boulahya, F García-Alvarado, U Amador. The role of the Co2+/Co3+ redox-pair in the properties of La2–xSrxCoTiO6 (0≤x≤0.5) perovskites as components for solid oxide fuel cells. Journal of Power Sources, 2013, 227: 309–317
https://doi.org/10.1016/j.jpowsour.2012.11.066
211 B Wang, G Long, Y Ji, M Pang, X Meng. Layered perovskite PrBa0.5Sr0.5CoCuO5+d as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2014, 606: 92–96
https://doi.org/10.1016/j.jallcom.2014.03.138
212 K Yi, L Sun, Q Li, T Xia, L Huo, H Zhao, J Li, Z Lü, J M Bassat, A Rougier, S Fourcade, J C Grenier. Effect of Nd-deficiency on electrochemical properties of NdBaCo2O6-d cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(24): 10228
https://doi.org/10.1016/j.ijhydene.2016.04.248
213 Q Zhou, Y Cheng, W Li, X Yang, J Liu, D An, X Tong, B Zhong, W Wang. Investigation of cobalt-free perovskite Sr2FeTi0.75 Mo0.25O6–d as new cathode for solid oxide fuel cells. Materials Research Bulletin, 2016, 74: 129–133
https://doi.org/10.1016/j.materresbull.2015.09.023
214 J Xue, Y Shen, T He. Performance of double-proveskite YBa0.5Sr0.5Co2O5+d as cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(11): 6894–6898
https://doi.org/10.1016/j.ijhydene.2011.02.090
215 Y Wang, X Zhao, S Lü, X Meng, Y Zhang, B Yu, X Li, Y Sui, J Yang, C Fu, Y Ji. Synthesis and characterization of SmSrCo2-x MnxO5+d (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) cathode materials for intermediate-temperature solid-oxide fuel cells. Ceramics International, 2014, 40(7): 11343–11350
https://doi.org/10.1016/j.ceramint.2014.03.113
216 S Lü, G Long, X Meng, Y Ji, B Lü, H Zhao. PrBa0.5Sr0.5Co2O5+x as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(7): 5914–5919
https://doi.org/10.1016/j.ijhydene.2011.12.134
217 S J Lee, D S Kim, S H Jo, P Muralidharan, D K Kim. Electrochemical properties of GdBaCo2/3Fe2/3Cu2/3O5+-CGO composite cathodes for solid oxide fuel cell. Ceramics International, 2012, 38(Sup.1): S493–496
https://doi.org/10.1016/j.ceramint.2011.05.061
218 X Li, X Jiang, H Xu, Q Xu, L Jiang, Y Shi, Q Zhang. Scandium-doped PrBaCo2-xScxO6-d oxides as cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38(27): 12035–12042
https://doi.org/10.1016/j.ijhydene.2013.07.024
219 S Choi, J Shin, G Kim. The electrochemical and thermodynamic characterization of PrBaCo2-xFexO5+d (x=0, 0.5, 1) infiltrated into yttria-stabilized zirconia scaffold as cathodes for solid oxide fuel cells. Journal of Power Sources, 2012, 201: 10–17
https://doi.org/10.1016/j.jpowsour.2011.09.096
220 C Zhu, X Liu, C Yi, D Yan, W Su. Electrochemical performance of PrBaCo2O5+d layered perovskite as an intermediate-temperature solid oxide fuel cell cathode. Journal of Power Sources, 2008, 185(1): 193–196
https://doi.org/10.1016/j.jpowsour.2008.06.075
221 A Tarancón, A Morata, G Dezanneau, S J Skinner, J A Kilner, S Estradé, F Hernández-Ramírez, F Peiró, J R Morante. GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources, 2007, 174(1): 255–263
https://doi.org/10.1016/j.jpowsour.2007.08.077
222 H Ding, X Xue, X Liu, G Meng. High performance layered SmBa0.5Sr0.5Co2O5+d cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 194(2): 815–817
https://doi.org/10.1016/j.jpowsour.2009.06.055
223 M Hou, W Sun, P Li, J Feng, G Yang, J Qiao, Z Wang, D Rooney, J Feng, K Sun. Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6-d for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 272: 759–765
https://doi.org/10.1016/j.jpowsour.2014.09.043
224 X Li, X Jiang, Y Shi, W Zhou, Q Xu, H Xu, Q Zhang. One-step synthesized nano-composite cathode material of Pr0.83 BaCo1.33Sc0.5O6-d–0.17PrCoO3 for intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2014, 39(27): 15039–15045
https://doi.org/10.1016/j.ijhydene.2014.07.051
225 J Zou, J Park, B Kwak, H Yoon, J Chung. Effect of Fe doping on PrBaCo2O5+d as cathode for intermediate-temperature solid oxide fuel cells. Solid State Ionics, 2012, 206: 112–119
https://doi.org/10.1016/j.ssi.2011.10.025
226 Y Zhang, B Yu, S Lu, X Meng, X Zhao, Y Ji, Y Wang, C Fu, X Liu, X Li, Y Sui, J Lang, J Yang. Effect of Cu doping on YBaCo2O5+d as cathode for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2014, 134: 107–115
https://doi.org/10.1016/j.electacta.2014.04.126
227 S Lü, G Long, Y Ji, X Meng, H Zhao, C Sun. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2011, 509(6): 2824–2828
https://doi.org/10.1016/j.jallcom.2010.11.128
228 A K Azad, J H Kim, J T S Irvine. Structure–property relationship in layered perovskite cathode LnBa0.5Sr0.5Co2O5+d (Ln=Pr, Nd) for solid oxide fuel cells. Journal of Power Sources, 2011, 196(17): 7333–7337
https://doi.org/10.1016/j.jpowsour.2011.02.063
229 Y Hu, C Bogicevic, Y Bouffanais, M Giot, O Hernandez, G Dezanneau. Synthesis, physical-chemical characterization and electrochemical performance of GdBaCo2–xNixO5+d (x = 0–0.8) as cathode materials for IT-SOFC application. Journal of Power Sources, 2013, 242: 50–56
https://doi.org/10.1016/j.jpowsour.2013.05.043
230 T Xia, N Lin, H Zhao, L Huo, J Wang, J C Grenier. Co-doped Sr2FeNbO6 as cathode materials for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 291–296
https://doi.org/10.1016/j.jpowsour.2009.03.025
231 A Subardi, M H Cheng, Y P Fu. Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+d cathode for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(35): 20783–20790
https://doi.org/10.1016/j.ijhydene.2014.06.134
232 R H Mitchell. Perovskites: Modern and Ancient. Ontario, Canada: Almaz Press, 2002
233 T Horita, H Kishimoto, K Yamaji, M E Brito, Y Xiong, H Yokokawa, Y Hori, I Miyachi. Effects of impurities on the degradation and long-term stability for solid oxide fuel cells. Journal of Power Sources, 2009, 193(1): 194–198
https://doi.org/10.1016/j.jpowsour.2008.10.127
234 S W Tao, J T S Irvine. A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials, 2003, 2(5): 320–323
https://doi.org/10.1038/nmat871
235 Q X Fu, F Tietz. Ceramic-based anode materials for improved redox cycling of solid oxide fuel cells. Fuel Cells (Weinheim), 2008, 8(5): 283–293
https://doi.org/10.1002/fuce.200800018
236 A K Azad, A Hakem, P M Iskandar Petra. Titanium doped LSCM anode for hydrocarbon fuelled SOFCs. AIP Conference Proceedings, 2015, 070069
https://doi.org/10.1063/1.4915787
237 S W Tao, J Canales-Vazquez, J T S Irvine. Structural and electrical properties of the perovskite oxide Sr2FeNbO6. Chemistry of Materials, 2004, 16(11): 2309–2316
https://doi.org/10.1021/cm049923+
238 H Téllez Lozano, J Druce, S J Cooper, J A Kilner. Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors? Science and Technology of Advanced Materials, 2017, 18(1): 977–986
https://doi.org/10.1080/14686996.2017.1402661
239 J Peña-Martínez, D Marrero-López, J C Ruiz-Morales, C Savaniu, P Núñez, J T S Irvine. Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3-d at lanthanum gallate electrolytes. Chemistry of Materials, 2006, 18(4): 1001–1006
https://doi.org/10.1021/cm0516659
240 N Danilovic, J L Luo, K T Chuang, A R Sanger. Ce0.9Sr0.1VOx (x=3, 4) as anode materials for H2S-containing {CH4} fueled solid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 247–257
https://doi.org/10.1016/j.jpowsour.2009.03.045
241 A K Azad, J T S Irvine. Characterization of YSr2Fe3O8-d as electrode materials for SOFC. Solid State Ionics, 2011, 192(1): 225–228
https://doi.org/10.1016/j.ssi.2010.11.027
242 Y H Huang, G Liang, M Croft, M Lehtimäki, M Karppinen, J B Goodenough. Double-perovskite anode materials Sr2MMoO6 (M= Co, Ni) for solid oxide fuel cells. Chemistry of Materials, 2009, 21(11): 2319–2326
https://doi.org/10.1021/cm8033643
243 J M Ralph, A C Schoeler, M Krumpelt. Materials for lower temperature solid oxide fuel cells. Electrochemical Technology, 2001, 6(5): 1161–1172
244 S B Adler. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4844
https://doi.org/10.1021/cr020724o
245 S W Tao, J T S Irvine. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-d, a redox-stable, efficient perovskite anode for SOFCs. Journal of the Electrochemical Society, 2004, 151(2): A252
https://doi.org/10.1149/1.1639161
246 S W Tao, J T S Irvine. Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3-d in relation to its potential as a solid oxide fuel cell anode material. Chemistry of Materials, 2004, 16(21): 4116–4121
https://doi.org/10.1021/cm049341s
247 J C Ruiz-Morales, J Canales-Vázquez, C Savaniu, D Marrero-López, W Zhou, J T S Irvine. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature, 2006, 439(7076): 568–571
https://doi.org/10.1038/nature04438
248 W Z Zhu, S C Deevi. A review on the status of anode materials for solid oxide fuel cells. Materials Science and Engineering A, 2003, 362(1–2): 228–239
https://doi.org/10.1016/S0921-5093(03)00620-8
249 D P Fagg, V V Kharton, A V Kovalevsky, A P Viskup, E N Naumovich, J R Frade. The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential {SOFC} anode materials. Journal of the European Ceramic Society, 2001, 21(10–11): 1831–1835
https://doi.org/10.1016/S0955-2219(01)00125-X
250 A Touleva, V Yufit, S Simons, W C Maskell, D J L Brett. A review of liquid metal anode solid oxide fuel cells. Journal of Electrochemical Science and Engineering, 2013, 3(3): 91–105
https://doi.org/10.5599/jese.2013.0032
251 X Wang, B Yu, W Zhang, J Chen, X Luo, K Stephan. Microstructural modification of the anode/electrolyte interface of SOEC for hydrogen production. International Journal of Hydrogen Energy, 2012, 37(17): 12833–12838
https://doi.org/10.1016/j.ijhydene.2012.05.093
252 L dos Santos-Gómez, L León-Reina, J M Porras-Vázquez, E R Losilla, D Marrero-López. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7
https://doi.org/10.1016/j.ssi.2013.03.005
253 P J Saines, B J Kennedy. Phase segregation in mixed Nb–Sb double perovskites Ba2LnNb1-xSbxO6-d. Journal of Solid State Chemistry, 2008, 181(2): 298–305
https://doi.org/10.1016/j.jssc.2007.11.035
254 F Tonus, M Bahout, V Dorcet, R K Sharma, E Djurado, S Paofai, R I Smith, S J Skinner. A-site order–disorder in the NdBaMn2O5+d SOFC electrode material monitored in situ by neutron diffraction under hydrogen flow. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11078–11085
https://doi.org/10.1039/C7TA01439B
255 Z Q Deng, J P Smit, H J Niu, G Evans, M R Li, Z L Xu, J B Claridge, M J Rosseinsky. B cation ordered double perovskite Ba2CoMo0.5Nb0.5O6-d as a potential SOFC cathode. Chemistry of Materials, 2009, 21(21): 5154–5162
https://doi.org/10.1021/cm902094q
256 S Afroze, A M Abdalla, N Radenahmad, et al. Synthesis, structural and thermal properties of double perovskite NdSrMn2O6 as potential anode materials for solid oxide fuel cells. In: 7th Brunei International Conference on Engineering and Technology 2017 (BICET 2017), Antalya, Turkey, 2018
257 H Falcón, J A Barbero, G Araujo, M T Casais, M J Martı́nez-Lope, J A Alonso, J L G Fierro. Double perovskite oxides A2FeMoO6-d (A=Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45
https://doi.org/10.1016/j.apcatb.2004.05.004
258 B Philipp, P Majewski, L Alff, A Erb, R Gross, T Graf, M S Brandt, J Simon, T Walther, W Mader, D Topwal, D D Sarma. Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A=Sr, Ba, and Ca). Physical Review B: Condensed Matter and Materials Physics, 2003, 68(14): 144431
https://doi.org/10.1103/PhysRevB.68.144431
259 A H Karim, K Y Park, T H Lee, S A Muhammed Ali, S Hossain, H Q H H Absah, J Y Park, A K Azad. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1–xTixNbO6–d as SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673
https://doi.org/10.1016/j.jallcom.2017.07.059
260 L Zhang, T He. Performance of double-perovskite Sr2-x SmxMgMoO6-d as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359
https://doi.org/10.1016/j.jpowsour.2011.06.064
261 L L Zhang, Q J Zhou, Q He, T He. Double-perovskites A2FeMoO6-d (A= Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366
https://doi.org/10.1016/j.jpowsour.2010.04.021
262 W E Pickett. Spin-density-functional-based search for half-metallic antiferromagnets. Physical Review. B, 1998, 57(17): 10613–10619
https://doi.org/10.1103/PhysRevB.57.10613
[1] Abdalla M. ABDALLA, Shahzad HOSSAIN, Pg MohdIskandr PETRA, Mostafa GHASEMI, Abul K. AZAD. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review[J]. Front. Energy, 2020, 14(2): 359-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed