Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2019, Vol. 14 Issue (6) : 1353-1366    https://doi.org/10.1007/s11464-019-0802-8
RESEARCH ARTICLE
Constructing super D-Kaup-Newell hierarchy and its nonlinear integrable coupling with self-consistent sources
Hanyu WEI1(), Tiecheng XIA2
1. College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China
2. Department of Mathematics, Shanghai University, Shanghai 200444, China
 Download: PDF(211 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

How to construct new super integrable equation hierarchy is an important problem. In this paper, a new Lax pair is proposed and the super D-Kaup-Newell hierarchy is generated, then a nonlinear integrable coupling of the super D-Kaup-Newell hierarchy is constructed. The super Hamiltonian structures of coupling equation hierarchy is derived with the aid of the super variational identity. Finally, the self-consistent sources of super integrable coupling hierarchy is established. It is indicated that this method is a straight- forward and efficient way to construct the super integrable equation hierarchy.

Keywords Super D-Kaup-Newell hierarchy      nonlinear integrable coupling      super Hamiltonian structures      self-consistent sources     
Corresponding Author(s): Hanyu WEI   
Issue Date: 07 January 2020
 Cite this article:   
Hanyu WEI,Tiecheng XIA. Constructing super D-Kaup-Newell hierarchy and its nonlinear integrable coupling with self-consistent sources[J]. Front. Math. China, 2019, 14(6): 1353-1366.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-019-0802-8
https://academic.hep.com.cn/fmc/EN/Y2019/V14/I6/1353
1 M J Ablowitz, A S Fokas. Complex Variables: Introduction and Applications. Cambridge: Cambridge Univ Press, 2003
https://doi.org/10.1017/CBO9780511791246
2 E S Afanasieva, V I Ryazanov, R R Salimov. On mappings in the Orlicz-Sobolev classes on Riemannian manifolds. J Math Sci, 2012, 181(1): 1–17
https://doi.org/10.1007/s10958-012-0672-z
3 E G Fan, H Q Zhang. New exact solutions to a system of coupled KdV equations. Phys Lett A, 1998, 245(5): 389–392
https://doi.org/10.1016/S0375-9601(98)00464-2
4 X G Geng, W X Ma. A generalized Kaup-Newell spectral problem, soliton equations and finite-dimensional integrable systems. Nuov Cim A, 1995, 108(4): 477–486
https://doi.org/10.1007/BF02813604
5 X B Hu. An approach to generate superextensions of integrable systems. J Phys A, 1997, 30(2): 619–633
https://doi.org/10.1088/0305-4470/30/2/023
6 W X Ma. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chinese J Contemp Math, 1992, 13(1): 79–89
7 W X Ma. Variational identities and Hamiltonian structures. AIP Conference Proceedings, 2010, 1212(1): 1–27
https://doi.org/10.1063/1.3367042
8 W X Ma. Nonlinear continuous integrable Hamiltonian couplings. Appl Math Comput, 2011, 217(17): 7238–7244
https://doi.org/10.1016/j.amc.2011.02.014
9 W X Ma. Integrable couplings and matrix loop algebras. AIP Conference Proceedings, 2013, 1562(1): 105–122
https://doi.org/10.1063/1.4828687
10 W X Ma. Interaction solutions to Hirota-Satsuma-Ito equation in (2+ 1)-dimensions. Front Math China, 2019, 14(3): 619–629
https://doi.org/10.1007/s11464-019-0771-y
11 W X Ma. A search for lump solutions to a combined fourth-order nonlinear PDE in (2+ 1)-dimensions. J Appl Anal Comput, 2019, 9: 1319–1332
12 W X Ma, M Chen. Hamiltonian and quasi-Hamiltonian structures associated with semi- direct sums of Lie algebras. J Phys A, 2006, 39(34): 10787–10801
https://doi.org/10.1088/0305-4470/39/34/013
13 W X Ma, J S He, Z Y Qin. A supertrace identity and its applications to super integrable systems. J Math Phys, 2008, 49(3): 033511
https://doi.org/10.1063/1.2897036
14 W X Ma, J Li, C M Khalique. A study on lump solutions to a generalized Hirota- Satsuma-Ito equation in (2+ 1)-dimensions. Complexity, 2018, 2018: 9059858
https://doi.org/10.1155/2018/9059858
15 W X Ma, J H Meng, M S Zhang. Nonlinear bi-integrable couplings with Hamiltonian structures. Math Comput Simulation, 2016, 127: 166–177
https://doi.org/10.1016/j.matcom.2013.11.007
16 W X Ma, Y Zhou. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J Differential Equations, 2018, 264(4): 2633–2659
https://doi.org/10.1016/j.jde.2017.10.033
17 M McAnally, W X Ma. An integrable generalization of the D-Kaup-Newell soliton hierarchy and its bi-Hamiltonian reduced hierarchy. Appl Math Comput, 2018, 323: 220–227
https://doi.org/10.1016/j.amc.2017.11.004
18 V S Shchesnovich, E V Doktorov. Modified Manakov system with self-consistent source. Phys Lett A, 1996, 213(1): 23–31
https://doi.org/10.1016/0375-9601(96)00090-4
19 G Z Tu. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys, 1989, 30(2): 330–338
https://doi.org/10.1063/1.528449
20 G Z Tu. An extension of a theorem on gradients of conserved densities of integrable systems. Northeastern Math J, 1990, 6(1): 28–32
21 H Wang, T C Xia. Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources. Front Math China, 2014, 9(6): 1367–1379
https://doi.org/10.1007/s11464-014-0419-x
22 H Y Wei, T C Xia. A new six-component super soliton hierarchy and its self-consistent sources and conservation laws. Chin Phys B, 2016, 25(1): 010201
https://doi.org/10.1088/1674-1056/25/1/010201
23 H Y Wei, T C Xia. Constructing variable coefficient nonlinear integrable coupling super AKNS hierarchy and its self-consistent sources. Math Methods Appl Sci, 2018, 41(16): 6883–6894
https://doi.org/10.1002/mma.5200
24 F J Yu. Nonautonomous rogue waves and ‘catch’ dynamics for the combined Hirota- LPD equation with variable coefficients. Commun Nonlinear Sci Numer Simul, 2016, 34: 142–153
https://doi.org/10.1016/j.cnsns.2015.10.018
25 J F Zhang. Multiple soliton solutions of the dispersive long-wave equations. Chin Phys Lett, 1999, 16(1): 4–5
https://doi.org/10.1088/0256-307X/16/1/002
26 Y F Zhang, L X Wu, W J Rui. A corresponding Lie algebra of a reductive homogeneous group and its applications. Commun Theor Phys (Beijing), 2015, 63(5): 535–548
https://doi.org/10.1088/0253-6102/63/5/535
[1] Gegenhasi,Zhaowen YAN. Discrete three-dimensional three wave interaction equation with self-consistent sources[J]. Front. Math. China, 2016, 11(6): 1501-1513.
[2] Hui WANG,Tiecheng XIA. Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources[J]. Front. Math. China, 2014, 9(6): 1367-1379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed