Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2008, Vol. 2 Issue (3) : 229-234    https://doi.org/10.1007/s11684-008-0043-9
Current progress on scaffolds of tissue engineering heart valves
DONG Nianguo1, SHI Jiawei1, CHEN Si1, HONG Hao1, HU Ping2
1.Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; 2.Institute of Polymer Science & Engineering, Tsinghua University;
 Download: PDF(130 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tissue engineering heart valves (TEHV) may be the most promising valve substitute, but the study has been relatively stagnant in the recent five years due to the special position, function and mechanical property of heart valves. It is one of the key factors to select an ideal scaffold material in the construction of TEHV. And this article will briefly review the current research and progress on the scaffolds of TEHV, especially based on Chinese works.
Issue Date: 05 September 2008
 Cite this article:   
SHI Jiawei,DONG Nianguo,HU Ping, et al. Current progress on scaffolds of tissue engineering heart valves[J]. Front. Med., 2008, 2(3): 229-234.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-008-0043-9
https://academic.hep.com.cn/fmd/EN/Y2008/V2/I3/229
1 Shinoka T, Breuer C K, Tanel R E, Zund G, Miura T, Ma P X, Langer R, Vacanti J P, Mayer J E Jr . Tissueengineering heart valves: valve leaflet replacement study in a lambmodel. Ann Thorac Surg, 1995, 60(6 Suppl): S513–516.
doi:10.1016/0003‐4975(95)00733‐4
2 Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss R R, Pethig K, Haverich A, Bader A . Tissueengineering of pulmonary heart valves on allogenic acellular matrixconduits: in vivo restoration of valve tissue. Circulation, 2000, 102(19 Suppl 3): III50–55
3 Hoerstrup S P, Sodian R, Daebritz S, Wang J, Bacha E A, Martin D P, Moran A M, Guleserian K J, Sperling J S, Kaushal S, Vacanti J P, Schoen F J, Mayer J E Jr . Functional living trileaflet heart valvesgrown in vitro. Circulation, 2000, 102(19 Suppl 3): III44–49
4 O'Brien M F, Goldstein S, Walsh S, Black K S, Elkins R, Clarke D . TheSynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissueheart valve for autologous recellularization first experimental studiesbefore clinical implantation. Semin ThoracCardiovasc Surg, 1999, 11(4 Suppl 1): 194–200
5 Simon P, Kasimir M T, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, Rieder E, Wolner E . Early failure of the tissue engineered porcine heartvalve Synergraft in pediatric patients. Eur J Cardiothorac Surg, 2003, 23(6): 1002–1006.
doi:10.1016/S1010‐7940(03)00094‐0
6 Hu P . Surgicalimplants for tissue engineering and the processing, modification andapplication of biomaterials. Zhongguo YiliaoQixie Zazhi, 2006, 12(7): 13–21 (in Chinese)
7 Song Q, Shi J W, Dong N G, Sun Z Q . The progresson tissue engineering heart valves. ZhonghuaShiyan Waike Zazhi, 2003, 20(4): 381–383 (in Chinese)
8 Flanagan T C, Pandit A . Living artificial heart valvealternatives. Eur Cell Mater, 2003, 6(1): 28–45
9 Dong N G, Sun Z Q, Shi J W, Zund G . Experimentalconstruction of tissue engineering heart valves. Zhonghua Shiyan Waike Zazhi, 2002, 19(1): 88–90 (in Chinese). .
10 Boontheekul T, Mooney D J . Protein-based signaling systemsin tissue engineering. Curr Opin Biotechnol, 2003, 14(5): 559–565.
doi:10.1016/j.copbio.2003.08.004
11 Dong N G, Ye X F, Shi J W, Song Q, Sun Z Q . Comparison on decellularizing approachesof biological scaffold with porcine aortic valve for tissue engineeringheart valve. Zhonghua Shiyan Waike Zazhi, 2005, 22(3): 377 (in Chinese)
12 Erdbrügger W, Konertz W, Dohmen P M, Posner S, Ellerbrok H, Brodde O E, Robenek H, Modersohn D, Pruss A, Holinski S, Stein-Konertz M, Pauli G . Decellularized xenogenicheart valves reveal remodeling and growth potential in vivo. Tissue Eng, 2006, 12(8): 2059–2068.
doi:10.1089/ten.2006.12.2059
13 Lichtenberg A, Tudorache I, Cebotari S, Ringes-Lichtenberg S, Sturz G, Hoeffler K, Hurscheler C, Brandes G, Hilfiker A, Haverich A . Invitro re-endothelialization of detergent decellularized heart valvesunder simulated physiological dynamic conditions. Biomaterials, 2006, 27(23): 4221–4229.
doi:10.1016/j.biomaterials.2006.03.047
14 Kasimir M T, Rieder E, Seebacher G, Nigisch A, Dekan B, Wolner E, Weigel G, Simon P . Decellularization does not eliminatethrombogenicity and inflammatory stimulation in tissue-engineeredporcine heart valves. J Heart Valve Dis, 2006, 15(2): 278–286
15 Rieder E, Kasimir M T, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G . Decellularizationprotocols of porcine heart valves differ importantly in efficiencyof cell removal and susceptibility of the matrix to recellularizationwith human vascular cells. J Thorac CardiovascSurg, 2004, 127(2): 399–405.
doi:10.1016/j.jtcvs.2003.06.017
16 Shi J W, Dong N G . Application of RGD peptidesin the field of tissue engineering. ZhonghuaShiyan Waike Zazhi, 2005, 22(9): 1150–1152 (in Chinese)
17 Bayless K J, Salazar R, Davis G E . RGD-dependent vacuolation and lumen formation observedduring endothelial cell morphogenesis in three-dimensional fibrinmatrices involves the alpha (v) beta (3) and alpha(5)beta(1) integrins. Am J Pathol, 2000, 156(5): 1673–1683
18 Stamm C, Khosravi A, Grabow N, Schmohl K, Treckmann N, Drechsel A, Nan M, Schmitz K P, Haubold A, Steinhoff G . Biomatrix/polymer compositematerial for heart valve tissue engineering.Ann Thorac Surg, 2004, 78(6): 2084–2092.
doi:10.1016/j.athoracsur.2004.03.106
19 Stock U A, Vacanti J P, Mayer Jr J E, Wahlers T . Tissueengineering of heart valves - current aspects. Thorac Cardiovasc Surg, 2002, 50(3): 184–193.
doi:10.1055/s‐2002‐32406
20 Schenke-Layland K, Riemann I, Opitz F, König K, Halbhuber K J, Stock U A . Comparative study of cellular and extracellular matrixcomposition of native and tissue engineered heart valves. Matrix Biol, 2004, 23(2): 113–125.
doi:10.1016/j.matbio.2004.03.005
21 Shangguan Y Y, Wang Y W, Wu Q, Chen G Q . The mechanicalproperties and in vitro biodegradation and biocompatibility of UV-treatedpoly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Biomaterials, 2006, 27(11): 2349–2357.
doi:10.1016/j.biomaterials.2005.11.024
22 Lutolf M P, Hubbell J A . Synthetic biomaterials asinstructive extracellular microenvironments for morphogenesis in tissueengineering. Nat Biotechnol, 2005, 23(1): 47–55.
doi:10.1038/nbt1055
23 Lutolf M P, Weber F E, Schmoekel H G, Schense J C, Kohler T, Müller R, Hubbell J A . Repair of bone defects using synthetic mimetics of collagenous extracellularmatrices. Nat Biotechnol, 2003, 21(5): 513–518.
doi:10.1038/nbt818
24 Lutolf M P, Lauer-Fields J L, Schmoekel H G, Metters A T, Weber F E, Fields G B, Hubbell J A . Synthetic matrix metalloproteinase-sensitive hydrogels for the conductionof tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA, 2003, 100(9): 5413–5418.
doi:10.1073/pnas.0737381100
25 Halstenberg S, Panitch A, Rizzi S, Hall H, Hubbell J A . Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradablebiosynthetic material for tissue repair. Biomacromolecules, 2002, 3(4): 710–723.
doi:10.1021/bm015629o
26 Qi H X, Hu P, Xu J, Wang A J . Encapsulationof drug reservoirs in fibers by emulsion electrospinning: morphologycharacterization and preliminary release assessment. Biomacromolecules, 2006, 7(8): 2327–2330.
doi:10.1021/bm060264z
27 Yoon K, Kim K, Wang X F, Fang D F, Hsiao B S, Chu B . Highflux ultrafiltration membranes based on electrospun nanofibrous PANscaffolds and chitosan coating. Polymer, 2006, 47(8): 2434–2441.
doi:10.1016/j.polymer.2006.01.042
28 Hersel U, Dahmen C, Kessler H . RGD modified polymers: biomaterials for stimulated celladhesion and beyond. Biomaterials, 2003, 24(24): 4385–4415.
doi:10.1016/S0142‐9612(03)00343‐0
29 Myles J L, Burgess B T, Dickinson R B . Modification of the adhesive properties of collagen bycovalent grafting with RGD peptides. JBiomater Sci Polym Ed, 2000, 11(1): 69–86.
doi:10.1163/156856200743508
30 Yang D Z, Hao J . Surface modification of biomaterialswith poplypeptides. Guowai Yixue ShengwuYixue Gongcheng Fence, 2004, 27(2): 65–68 (in Chinese)
31 Shi J W, Dong N G, Sun Z Q . Immobilization of RGD peptides onto decellularized valvescaffolds to promote cell adhesion. J WuhanUniv Technol Mater Sci Ed, 2007, 22(4): 686–690.
doi:10.1007/s11595‐006‐4686‐6
32 Shi J W, Dong N G, Sun Z Q, Qiu Y M . The roleof RGD peptides and transforming growth factor-β1 in TEHV construction. Zhonghua Yi XueZa Zhi, 2006, 86(29): 2074–2077 (in Chinese)
33 Dong N G, Qiu Y M, Shi J W . Applications of transforming growth factor - beta1 onconstruction of tissue engineering heart valves in vitro. Zhonghua Yi Xue Za Zhi, 2007, 87(23): 1622–1626 (in Chinese)
34 Hong H, Dong N G, Shi J W . Amplex Red fluorometric assay for detection of lysyloxidase in tissue engineered heart valve. Zhongguo Xiong Xin Xueguan Linchuang Zazhi, 2007, 14(1): 27–30 (in Chinese)
35 Dong N G, Ye X F, Sun Z Q, Shi J W, Qiu Y M, Chen J J . Experimental study on mechanical properties of decellularized porcineaortic valve and effects of precoating methods of biological scaffoldon histocompatibility. Zhonghua Wai KeZa Zhi, 2007, 45(16): 1128–1131 (in Chinese)
36 Mott J D, Werb Z . Regulation of matrix biologyby matrix metalloproteinases. Curr OpinCell Biol, 2004, 16(5): 558–564.
doi:10.1016/j.ceb.2004.07.010
37 Shinoka T . Tissueengineered heart valves: autologous cell seeding on bio-degradablepolymer scaffold. Artif Organs, 2002, 26(5): 402–406.
doi:10.1046/j.1525‐1594.2002.07004.x
38 Engelmayr G C Jr, Rabkin E, Sutherland F W, Schoen F J, Mayer J E Jr, Sacks M S . The independent role of cyclic flexure in the early in vitro development of an engineered heartvalve tissue. Biomaterials, 2005, 26(2): 175–187.
doi:10.1016/j.biomaterials.2004.02.035
39 Sodian R, Hoerstrup S P, Sperling J S, Daebritz S, Martin D P, Moran A M, Kim B S, Schoen F J, Vacanti J P, Mayer J E Jr . Early in vivo experience with tissue-engineered trileaflet heartvalves. Circulation, 2000, 102(19 Suppl 3): III22–29
40 Davis M E, Hsieh P C, Grodzinsky A J, Lee R T . Custom designof the cardiac microenvironment with biomaterials. Circ Res, 2005, 97(1): 8–15.
doi:10.1161/01.RES.0000173376.39447.01
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed