Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med Chin    2009, Vol. 3 Issue (1) : 26-29     DOI: 10.1007/s11684-009-0008-7
RESEARCH ARTICLE |
Correlativity study between expression of DNA double-strand break repair protein and radiosensitivity of tumor cells
Liang ZHUANG1, Shiying YU1(), Xiaoyuan HUANG2, Yang CAO2, Huihua XIONG1
1. Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; 2. Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Download: PDF(90 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

DNA double-strand break (DSB) is generally regarded as the most lethal of all DNA lesions after radiation. Ku80, DNA-PK catalytic subunit (DNA-PKcs) and ataxia telangiectasia mutated (ATM) proteins are major DSB repair proteins. In this study, survival fraction at 2Gy (SF2) values of eight human tumor cell lines (including four human cervical carcinoma cell lines HeLa, SiHa, C33A, Caski, three human breast carcinoma cell lines MCF-7, MDA-MB-231, MDA-MB-453, and one human lung carcinoma cell line A549) were acquired by clone formation assay, and western blot was applied to detect the expressions of Ku80, DNA-PKcs and ATM protein. The correlativity of protein expression with SF2 value was analyzed by Pearson linear correlation analysis. We found that the expression of same protein in different cell lines and the expression of three proteins in the same cell line had a significant difference. The SF2 values were also different in eight tumor cell lines and there was a positive correlativity between the expression of DNA-PKcs and SF2 (r =0.723, P = 0.043), but Ku80 and ATM expression had no correlation with SF2 (P>0.05). These findings suggest that the expression level of DNA-PKcs protein can be an indicator for predicting the radiosensitivity of tumor cells.

Keywords Ku80      DNA-PK(cs)-binding protein, human      ataxia telangiectasia mutated protein      tumor cell lines      radiosensitivity     
Corresponding Authors: YU Shiying,Email:syy@tjh.tjmu.edu.cn   
Issue Date: 05 March 2009
URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-009-0008-7     OR     http://academic.hep.com.cn/fmd/EN/Y2009/V3/I1/26
Fig.1  The expression of Ku80, DNA-PKcs and ATM protein in eight tumor cell lines. 1: HeLa; 2: SiHa; 3: C33A; 4: Caski; 5: MDA-MB-231; 6: MDA-MB-453; 7: MCF-7; 8: A549.
cell linesprotein expression*SF2α
Ku80DNA-PKcsATM
HeLa1.476±0.2861.930±0.3240.674±0.1210.548±0.0200.144±0.017
SiHa1.095±0.1751.581±0.1580.997±0.2500.587±0.0150.176±0.010
C33A1.756±0.3440.964±0.1990.551±0.1320.316±0.0190.437±0.034
Caski0.535±0.1142.489±0.3430.809±0.2090.517±0.0130.182±0.012
MDA-MB-2311.032±0.2111.505±0.2890.762±0.2780.459±0.0340.250±0.037
MDA-MB-4530.924±0.0780.981±0.0870.658±0.1780.371±0.0430.337±0.064
MCF-72.060±0.1411.584±0.4120.416±0.0890.636±0.0160.081±0.012
A5492.067±0.2894.392±0.5110.648±0.1740.692±0.0530.065±0.031
Tab.1  The expressions of Ku80, DNA-PKcs and ATM protein and SF2, a values in eight tumor cell lines
1 Van Gent D C, Hoeijmakers J H, Kanaar R. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet , 2001, 2(3): 196–206
doi: 10.1038/35056049
2 Weterings E, Chen D J. DNA-dependent protein kinase in nonhomologous end joining: a lock with multiple keys?J Cell Biol , 2007, 179(2): 183–186
doi: 10.1083/jcb.200705106
3 Collis S J, DeWeese T L, Jeggo P A, Parker A R. The life and death of DNA-PK. Oncogene , 2005, 24(6): 949–961
doi: 10.1038/sj.onc.1208332
4 Lieber M R, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol , 2003, 4(9): 712–720
doi: 10.1038/nrm1202
5 Valerie K, Povirk L F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene , 2003, 22(37): 5792–5812
doi: 10.1038/sj.onc.1206679
6 Walker J R, Corpina R A, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature , 2001, 412(6847): 607–614
doi: 10.1038/35088000
7 Dip R, Naegeli H. More than just strand breaks: the recognition of structural DNA discontinuities by DNA-dependent protein kinase catalytic subunit. FASEB J , 2005, 19(7): 704–715
doi: 10.1096/fj.04-3041rev
8 Budman J, Chu G. Processing of DNA for nonhomologous end-joining by cell-free extract. EMBO J , 2005, 24(4): 849–860
doi: 10.1038/sj.emboj.7600563
9 Boskovic J, Rivera-Calzada A, Maman J D, Chacón P, Willison K R, Pearl L H, Llorca O. Visualization of DNA-induced conformational changes in the DNA repair kinase DNA-PKcs. EMBO J , 2003, 22(21): 5875–5882
doi: 10.1093/emboj/cdg555
10 Pawelczak K S, Turchi J J. A mechanism for DNA-PK activation requiring unique contributions from each strand of a DNA terminus and implications for microhomology-mediated nonhomologous DNA end joining. Nucleic Acids Res , 2008, 36(12): 4022–4031
doi: 10.1093/nar/gkn344
11 Sakata K, Someya M, Matsumoto Y, Hareyama M. Ability to repair DNA double-strand breaks related to cancer susceptibility and radiosensitivity. Radiat Med , 2007, 25(9): 433–438
doi: 10.1007/s11604-007-0161-3
12 Zhuang L, Yu S Y, Huang X Y, Gao Q L, Xiong H, Leng Y. Effect of Ku80 expression inhibition by RNA interference on proliferation of cervical carcinoma cell line HeLa. Ai Zheng , 2007, 26(3): 252–257 (in Chinese)
13 Rampakakis E, Di Paola D, Zannis-Hadjopoulos M. Ku is involved in cell growth, DNA replication and G1-S transition. J Cell Sci , 2008, 121(Pt 5): 590–600
doi: 10.1242/jcs.021352
14 Hsu H L, Gilley D, Galande S A, Hande M P, Allen B, Kim S H, Li G C, Campisi J, Kohwi-Shigematsu T, Chen D J. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev , 2000, 14(22): 2807–2812
doi: 10.1101/gad.844000
15 Bailey S M, Brenneman M A, Halbrook J, Nickoloff J A, Ullrich R L, Goodwin E H. The kinase activity of DNA-PK is required to protect mammalian telomeres. DNA Repair (Amst) , 2004, 3(3): 225–233
doi: 10.1016/j.dnarep.2003.10.013
16 Sirzen F, Nilsson A, Zhivotovsky B, Lewensohn R. DNA-dependent protein kinase content and activity in lung carcinoma cell lines: correlation with intrinsic radiosensitivity. Eur J Cancer , 1999, 35(1): 111–116
doi: 10.1016/S0959-8049(98)00289-5
17 Shintani S, Mihara M, Li C, Nakahara Y, Hino S, Nakashiro K, Hamakawa H. Up-regulation of DNA-dependent protein kinase correlates with radiation resistance in oral squamous cell carcinoma. Cancer Sci , 2003, 94(10): 894–900
doi: 10.1111/j.1349-7006.2003.tb01372.x
18 Zhao H J, Hosoi Y, Miyachi H, Ishii K, Yoshida M, Nemoto K, Takai Y, Yamada S, Suzuki N, Ono T. DNA-dependent protein kinase activity correlates with Ku70 expression and radiation sensitivity in esophageal cancer cell lines. Clin Cancer Res , 2000, 6(3): 1073–1078
19 Morio T, Kim H. Ku, Artemis, and ataxia-telangiectasia-mutated: signalling networks in DNA damage. Int J Biochem Cell Biol , 2008, 40(4): 598–603
doi: 10.1016/j.biocel.2007.12.007
20 Burma S, Chen D J. Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Repair (Amst) , 2004, 3(8-9): 909–918
doi: 10.1016/j.dnarep.2004.03.021
21 Hammarsten O, Chu G. DNA-dependent protein kinase: DNA binding and activation in the absenceβofβKu. Proc Natl Acad Sci USA , 1998, 95(2): 525–530
doi: 10.1073/pnas.95.2.525
22 West R B, Yaneva M, Lieber M R. Productive and nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol Cell Biol , 1998, 18(10): 5908–5920
23 Salles B, Calsou P, Frit P, Muller C. The DNA repair complex DNA-PK, a pharmacological target in cancer chemotherapy and radiotherapy. Pathol Biol (Paris) , 2006, 54(4): 185–193
doi: 10.1016/j.patbio.2006.01.012
24 Kelley M R, Fishel M L. DNA repair proteins as molecular targets for cancer therapeutics. Anticancer Agents Med Chem , 2008, 8(4): 417–425
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed