Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2009, Vol. 3 Issue (4) : 415-420     DOI: 10.1007/s11684-009-0072-z
Research articles |
Adenovirus-mediated tissue inhibitor of metalloproteinase-3 gene transfection inhibits rabbit intervertebral disc degeneration in vivo
Xudong YU MM,Zengwu SHAO MD,Liming XIONG MD,Weiwei XU MM,Hezhong WANG MM,Huifa XU MM,
Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
Download: PDF(267 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  The aim of this study was to investigate the inhibitory effects of recombinant adenovirus vector carrying tissue inhibitor of metalloproteinase-3 (RAdTIMP-3) against degeneration of rabbit intervertebral disc. Thirty Japanese white rabbits of 4 months old were randomly divided into 5 groups. Mild or moderate rabbit lumbar disc degeneration model was constructed with the controllable axial loading device by imposing 98N pressure at the discs for 2 weeks. Various doses of virus were injected into the degenerated discs as follows: 20μL of normal saline in group 1; 20μL of RAd66 (an empty adenovirus vector, 1.0×1010OPU/mL) in group 2; and 20, 10, and 5μL of RAdTIMP-3 (1.0×1010OPU/mL) in groups 3, 4, and 5, respectively. Two weeks after the injection, the discs were collected for investigations, including assessment of degeneration degrees according to the Thompson’s grading system, reverse-transcription polymerase chain reaction (RT-PCR) assay for TIMP-3 gene, Safranin O-Fast green staining, and immunohistochemical staining for TIMP-3 and type II collagen. According to Thompson’s criteria, the degeneration of groups 3, 4, and 5, especially group 3, was alleviated as compared with groups 1 and 2. RT-PCR revealed that the expression of TIMP-3 in groups 3, 4, and 5, especially in group 3, was significantly enhanced as compared with group 1 (P<0.01). Both Safranin O-Fast green staining and type II collagen staining demonstrated better reserved integrity of disc matrix in groups 3, 4, and 5 than in groups 1 and 2. TIMP-3 staining exhibited an obvious increase of positive-staining rate in groups 3, 4, and 5 as compared with group 1. The positive-staining rate in group 3 (79.42%±1.35%) was about 3times that of group 1 (25.47%±5.46%, P<0.01). RAdTIMP-3 can effectively protect the matrix of rabbit intervertebral disc against overloading-induced degeneration in a dose-dependent manner, resulting in the alleviation of disc degeneration.
Keywords tissue inhibitor of metalloproteinase-3, intervertebral disc      rabbit      gene therapy      
Issue Date: 05 December 2009
URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-009-0072-z     OR     http://academic.hep.com.cn/fmd/EN/Y2009/V3/I4/415
Arner E C, Pratta M A, Decicco C P, Xue C B, Newton R C, Trzaskos J M, Magolda R L, Tortorella M D. Aggrecanase: a target for the design of inhibitors ofcartilage degradation. Ann New York Sci, 1999, 878: 92―107

doi: 10.1111/j.1749-6632.1999.tb07676.x
Westling J, Fosang A J, Last K, Thompson V P, Tomkinson K N, Hebert T, McDonagh T, Collins-Racie LA, LaVallie E R, Morris E A, Sandy J D. ADAMTS4 cleavesat the aggrecanase site (Glu373-Ala374) and secondarily at the matrixmetalloproteinase site (Asn341-Phe342) in the aggrecan interglobulardomain. J Biol Chem, 2002, 277(18): 16059―16066

doi: 10.1074/jbc.M108607200
Little C B, Hughes C E, Curtis C L, Jones S A, Caterson B, Flannery C R. Cyclosporine A inhibition of aggrecanase-mediated proteoglycan catabolismin articular cartilage. Arthritis Rheum, 2002, 46(1): 124―129

doi: 10.1002/1529-0131(200201)46:1<124::AID-ART10121>3.0.CO;2-X
Sztrolovics R, Alini M, Roughley P J, Mort J S. Aggrecandegradation in human intervertebral disc and articular cartilage. Biochem J, 1997, 326(Pt 1): 235―241
Kashiwagi M, Tortorella M, Nagase H, Brew K. TIMP-3 is apotent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem, 2001, 276(16): 12501―12504

doi: 10.1074/jbc.C000848200
Malfait A M, Liu R Q, Ijiri K, Komiya S, Tortorella M D. Inhibition of ADAM-TS4 andADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J Biol Chem, 2002, 227(25): 222201―222208
Roberts S, Caterson B, Menage J, Evans E H, Jaffray D C, Eisenstein S M. Matrix metalloproteinases and aggrecanase: their rolein disorders of the human intervertebral disc. Spine, 2000, 25(23): 3005―3013

doi: 10.1097/00007632-200012010-00007
Roughley P J, Alini M, Antoniou J. The role of proteoglycans in aging, degeneration andrepair of the intervertebral disc. BiochemSoc Trans, 2002, 30(Pt 6): 869―874
Tsuji T, Chiba K, Imabayashi H, Fujita Y, Hosogane N, Okada Y, Toyama Y. Age-relatedchanges in expression of tissue inhibitor of metalloproteinases-3associated with transition from the notochordal nucleus pulposus tothe fibrocartilaginous nucleus pulposus in rabbit intervertebral disc. Spine, 2007, 32(8): 849―856

doi: 10.1097/01.brs.0000259804.39881.62
Patel K P, Sandy J D, Akeda K, Miyamoto K, Chujo T, An H S, Masuda K. Aggrecanasesand aggrecanase-generated fragments in the human intervertebral discat early and advanced stages of disc degeneration. Spine, 2007, 32(23): 2596―2603

doi: 10.1097/BRS.0b013e318158cb85
Pockert A J, Richardson S M, Le Maitre C L, Lyon M, Deakin J A, Buttle D J, Freemont A J, Hoyland J A. Modified expression of the ADAMTS enzymes and tissueinhibitor of metalloproteinases 3 during human intervertebral discdegeneration. Arthritis Rheum, 2009, 60(2): 482―491

doi: 10.1002/art.24291
Xiong X Q, Shao Z W, Pei H, Zhan Z R, Yu X D, Wang H Z. Construct and estimate of rabbit lumbar disc degeneration model withthe controllable axial loading. ZhongguoBingli Shengli Zazhi, 2008, 24(10): 2077―2080 (in Chinese)
Hu X J, Shao Z W. The in vivo effects of tumornecrosis factor-α on the degeneration of rabbit lumbar intervertebraldisc. Zhongguo Jizhu Jisui Zazhi, 2006, 16(7): 541―544 (in Chinese)
Thompson J P, Pearce R H, Schechter M T, Adams M E, Tsang I K, Bishop P B. Preliminary evaluation of a scheme for grading the gross morphologyof the human intervertebral disc. Spine, 1990, 15(5): 411―445

doi: 10.1097/00007632-199005000-00012
Xiong X, Yang S, Shao Z, Liu X, Zhan Z, Duan D. Up-regulationof niacinamide in intervertebral disc aggrecan in vitro. J Huazhong Univ Sci Technolog Med Sci, 2006, 26(1): 89―92
Xiong L M, Guo B, Shao Z W, Yang S H, Xie M, Wang H Z. Recombinant adenovirus carrying tissue inhibitor of metalloproteinase-3gene regulates the matrix of rabbit intervertebral disc in vivo. ZhongguoJiaoxing Waike Zazhi, 2009, 17(5): 356―360 (in Chinese)
Arner E C. Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol, 2002, 2(3): 322―329

doi: 10.1016/S1471-4892(02)00148-0
Okuda S, Myoui A, Ariga K, Nakase T, Yonenobu K, Yoshikawa H. Mechanisms of age-related decline in insulin-like growthfactor-I dependent proteoglycan synthesis in rat intervertebral disccells. Spine, 2001, 26(22): 2421―2426

doi: 10.1097/00007632-200111150-00005
Cs-Szabo G, Ragasa-San Juan D, Turumella V, Masuda K, Thonar E J, An H S. Changes in mRNA and proteinlevels of proteoglycans of the annulus fibrosus and nucleus pulposusduring intervertebral disc degeneration. Spine, 2002, 27(20): 2212―2209

doi: 10.1097/00007632-200210150-00006
Gendron C, Kashiwagi M, Hughes C, Caterson B, Nagase H. TIMP-3 inhibits aggrecanase-mediatedglycosaminoglycan release from cartilage explants stimulated by catabolicfactors. FEBS Lett, 2003, 555(3): 431―436

doi: 10.1016/S0014-5793(03)01295-X
Tsuji T, Chiba K, Imabayashi H, Fujita Y, Hosogane N, Okada Y, Toyama Y. Age-relatedchanges in expression of tissue inhibitor of metalloproteinases-3associated with transition from the notochordal nucleus pulposus tothe fibrocartilaginous nucleus pulposus in rabbit intervertebral disc. Spine, 2007, 32(8): 849―856

doi: 10.1097/01.brs.0000259804.39881.62
Le Maitre C L, Freemont A J, Hoyland J A. Localization of degradative enzymes and their inhibitorsin the degenerate human intervertebral disc. J Pathol, 2004, 204(1): 47―54

doi: 10.1002/path.1608
Johnstone B, Bayliss M T. The large proteoglycans ofthe human intervertebral disc. Changes in their biosynthesis and structurewith age, topography, and pathology. Spine, 1995, 20(6): 674―684
Moon S H, Gilbertson L G, Nishida K, Knaub M, Muzzonigro T, Robbins P D, Evans C H, Kang J D. Human intervertebral disc cells are geneticallymodifiable by adenovirus-mediated gene transfer: implications forthe clinical management of intervertebral disc disorders. Spine, 2000, 25(20): 2573―2579

doi: 10.1097/00007632-200010150-00006
Zhan Z, Shao Z, Xiong X, Yang S, Du J, Zheng Q, Wang H, Guo X, Liu Y. Ad/CMV- hTGF-beta1treats rabbit intervertebral discs degeneration in vivo. J Huazhong Univ SciTechnolog Med Sci, 2004, 24(6): 599―601, 624
MacLean J J, Roughley P J, Monsey R D, Alini M, Iatridis J C. Invivo intervertebral disc remodeling: kinetics of mRNA expressionin response to a single loading event. J Orthop Res, 2008, 26(5): 579―588

doi: 10.1002/jor.20560
Adams M A, Dolan P, Hutton W C, Porter R W. Diurnal changes in spinal mechanics and their clinical significance. J Bone Joint Surg, 1990, 72(2): 266―270
Gendron C, Kashiwagi M, Hughes C, Caterson B, Nagase H. TIMP-3 inhibits aggrecanase-mediatedglycosaminoglycan release from cartilage explants stimulated by catabolicfactors. FEBS Lett, 2003, 555(3): 431―436

doi: 10.1016/S0014-5793(03)01295-X
[1] Wei Lu,Qingzhang Zhou,Hao Yang,Hao Wang,Yexing Gu,Qi Shen,Jinglun Xue,Xiaoyan Dong,Jinzhong Chen. Gene therapy for hemophilia B mice with scAAV8-LP1-hFIX[J]. Front. Med., 2016, 10(2): 212-218.
[2] Yi Liang,Qisheng Feng,Jian Hong,Futuo Feng,Yi Sang,Wenrong Hu,Miao Xu,Roujun Peng,Tiebang Kang,Jinxin Bei,Yixin Zeng. Tumor growth and metastasis can be inhibited by maintaining genomic stability in cancer cells[J]. Front. Med., 2015, 9(1): 57-62.
[3] Chuanfeng Wu, Cynthia E. Dunbar. Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity[J]. Front Med, 2011, 5(4): 356-371.
[4] Jian XIN BM, Ze-Feng XIA MD, Kai-Xiong TAO MD, Kai-Lin CAI PhD, Gao-Xiong HAN MD, Xiao-Ming SHUAI MD, Ji-Liang WANG MD, Han-Song DU MD, Guo-Bin WANG PhD, Yan LUO MM, . Development of a magnetite-gene complex for gene transfection[J]. Front. Med., 2010, 4(2): 241-246.
[5] Youguo HAO, Min ZHANG, Jinzhi XU, Bitao BU, Jiajun WEI. Construction of lentiviral vector carrying Rab9 gene and its expression in mouse brain[J]. Front Med Chin, 2009, 3(2): 141-147.
[6] GUO Tiecheng, CAO Xuebing, XIA Limin. Repetitive transcranial magnetic stimulation causes significant changes of chemical substances in the brain of rabbits with experimental intracerebral hemorrhage[J]. Front. Med., 2008, 2(4): 406-409.
[7] XIA Xi, WANG Beibei, CAO Li, CHEN Gang, WU Peng, LU Yunping, ZHOU Jianfeng, MA Ding. Investigation of gene therapy of denovirus in immune suppression[J]. Front. Med., 2008, 2(4): 386-390.
[8] XIONG Ying, GUO Wen, LI Ting, LI Ke. Influence of Survivin-targeted siRNA on the biological features of colorectal carcinoma cells[J]. Front. Med., 2007, 1(3): 304-307.
[9] TIAN Yongji, LI Guilin, GAO Jun, WANG Renzhi, KONG Yanguo, ZHANG Zhenxing, LI Shifang, TIAN Shiqiang, DOU Wanchen, ZHANG Bo. Construction of 6HRE-GFAP-Baxα system specific for glioma gene therapy[J]. Front. Med., 2007, 1(1): 49-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed