Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2010, Vol. 4 Issue (4) : 412-418     DOI: 10.1007/s11684-010-0260-x
Research articles |
p53 functional activation is independent of its genotype in five esophageal squamous cell carcinoma cell lines
Junfang JI,Kun WU,Min WU,Qimin ZHAN,
State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China;
Download: PDF(350 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  p53 mutations have been found in many esophageal squamous cell carcinoma (ESCC) clinical specimens and cell lines. We reasoned that functional inactivation of wild-type p53 or the functional activation of mutant-type p53 might exist in these specimens and cell lines. In this study, we identified the correlation between p53 functional activation and its genotype in five different ESCC cell lines. To examine the potential p53 activation in a certain ESCC cell line, DNA damage methods including X-ray exposure and cisplatin treatment were employed to treat cells. Further, the expression of p53 protein and four transcripts of well-known p53 target genes were investigated using Western blot and reverse transcription-polymerase chain reaction (RT-PCR) after cell exposure to DNA damage. The results showed that in KYSE 30 cell line with mutant p53 and KYSE 150 with wild-type p53, p53 could be activated by DNA damages. However, p53 could not be activated following the DNA damages in YES 2 with wild-type p53, KYSE 70 with mutant p53, and EC9706 with unknown p53 genotype. All our data indicated that p53 function in certain cells is not closely correlated with its genotype. To judge p53 function in a particular cell line, it is important to examine the p53 functional activation, but not to simply rely on the p53 genotype.
Keywords p53      esophageal squamous cell carcinoma      DNA damage      
Issue Date: 05 December 2010
URL:     OR
Parkin D M, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin, 2005, 55(2): 74–108
PMID: 15761078
Ke L. Mortality and incidence trends from esophagus cancerin selected geographic areas of China circa 1970-90. Int J Cancer, 2002, 102(3): 271–274
PMID: 12397650
Lerut T, Coosemans W, De Leyn P, Van Raemdonck D, Deneffe G, Decker G. Treatment of esophageal carcinoma. Chest, 1999, 116(6 Suppl): 463S–465S
PMID: 10619509
Zhan Q, Carrier F, Fornace A J Jr. Induction of cellularp53 activity by DNA-damaging agents and growth arrest. Mol Cell Biol, 1993, 13(7): 4242–4250
PMID: 8321226
Hainaut P, Hernandez T, Robinson A, Rodriguez-Tome P, Flores T, Hollstein M, Harris C C, Montesano R. IARC Database of p53 gene mutations in human tumors and cell lines:updated compilation, revised formats and newvisualisation tools. Nucleic Acids Res, 1998, 26(1): 205–213
PMID: 9399837
May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene, 1999, 18(53): 7621–7636
PMID: 10618702
Zhan Q, Fan S, Bae I, Guillouf C, Liebermann D A, O'Connor P M, Fornace A J Jr. Induction of bax by genotoxic stress in human cells correlates withnormal p53 status and apoptosis. Oncogene, 1994, 9(12): 3743–3751
PMID: 7970735
Greenblatt M S, Bennett W P, Hollstein M, Harris C C. Mutations in the p53 tumor suppressor gene: clues tocancer etiology and molecular pathogenesis. Cancer Res, 1994, 54(18): 4855–4878
PMID: 8069852
Tanaka H, Shibagaki I, Shimada Y, Wagata T, Imamura M, Ishizaki K. Characterization of p53 genemutations in esophageal squamous cell carcinoma cell lines: increasedfrequency and different spectrum of mutations from primary tumors. Int J Cancer, 1996, 65(3): 372–376
PMID: 8575860
Ko L J, Prives C. p53: puzzle and paradigm. Genes Dev, 1996, 10(9): 1054–1072
PMID: 8654922
Merchant A K, Loney T L, Maybaum J. Expression of wild-type p53 stimulates an increase in both Bax and Bcl-xL protein content in HT29 cells. Oncogene, 1996, 13(12): 2631–2637
PMID: 9000137
Miyashita T, Krajewski S, Krajewska M, Wang H G, Lin H K, Liebermann D A, Hoffman B, Reed J C. Tumor suppressorp53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994, 9(6): 1799–1805
PMID: 8183579
Pietenpol J A, Tokino T, Thiagalingam S, el-Deiry W S, Kinzler K W, Vogelstein B. Sequence-specific transcriptionalactivation is essential for growth suppression by p53. Proc Natl Acad Sci U S A, 1994, 91(6): 1998–2002
PMID: 8134338
Moll U M, LaQuaglia M, Bénard J, Riou G. Wild-type p53 protein undergoes cytoplasmic sequestrationin undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci U S A, 1995, 92(10): 4407–4411
PMID: 7753819
Moll U M, Ostermeyer A G, Haladay R, Winkfield B, Frazier M, Zambetti G. Cytoplasmic sequestrationof wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol, 1996, 16(3): 1126–1137
PMID: 8622657
Fan W, Jin S, Tong T, Zhao H, Fan F, Antinore M J, Rajasekaran B, Wu M, Zhan Q. BRCA1 regulates GADD45 through its interactions withthe OCT-1 and CAAT motifs. J Biol Chem, 2002, 277(10): 8061–8067
PMID: 11777930
Barnas C, Martel-Planche G, Furukawa Y, Hollstein M, Montesano R, Hainaut P. Inactivation of the p53 proteinin cell lines derived from human esophageal cancers. Int J Cancer, 1997, 71(1): 79–87
PMID: 9096669
Fujii T, Kato S, Yamana H, Tanaka Y, Fujita H, Shirouzu K, Morimatsu M. Expression of G1 cell cycle markers and the effect of adenovirus-mediatedoverexpression of p21Waf-1 in squamous cell carcinoma of the esophagus. Int J Oncol, 2001, 18(1): 157–163
PMID: 11115554
Rigberg D A, Centeno J, Kim F S, Ke B, Swenson K, Maggard M, McFadden D W. Irradiation-induced up-regulation of Fas in esophagealsquamous cell carcinoma is not accompanied by Fas ligand-mediatedapoptosis. J Surg Oncol, 1999, 71(2): 91–96
PMID: 10389864
el-Deiry W S. Regulation of p53 downstream genes. Semin Cancer Biol, 1998, 8(5): 345–357
PMID: 10101800
Leng R P, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant J M, Lozano G, Hakem R, Benchimol S. Pirh2, a p53-induced ubiquitin-proteinligase, promotes p53 degradation. Cell, 2003, 112(6): 779–791
PMID: 12654245
Zhan Q. Gadd45a, a p53- and BRCA1-regulated stress protein, incellular response to DNA damage. Mutat Res, 2005, 569(1–2): 133–143
PMID: 15603758
Rigberg D A, Kim F S, Blinman T A, Cole M A, Lane J S, So J, McFadden D W. p21 expression is increased by irradiation in esophageal squamouscell carcinoma. J Surg Res, 1998, 76(2): 137–142
PMID: 9698513
el-Deiry W S, Kern S E, Pietenpol J A, Kinzler K W, Vogelstein B. Definition of a consensus binding site for p53. Nat Genet, 1992, 1(1): 45–49
PMID: 1301998
Hollstein M, Sidransky D, Vogelstein B, Harris C C. p53 mutations in human cancers. Science, 1991, 253(5015): 49–53
PMID: 1905840
Liang S H, Clarke M F. Regulation of p53 localization. Eur J Biochem, 2001, 268(10): 2779–2783
PMID: 11358492
[1] Jiangbo Du,Wenjie Xue,Yong Ji,Xun Zhu,Yayun Gu,Meng Zhu,Cheng Wang,Yong Gao,Juncheng Dai,Hongxia Ma,Yue Jiang,Jiaping Chen,Zhibin Hu,Guangfu Jin,Hongbing Shen. U-shaped association between telomere length and esophageal squamous cell carcinoma risk: a case-control study in Chinese population[J]. Front. Med., 2015, 9(4): 478-486.
[2] Yang Yang, Xiaofei Han, Jingyun Guan, Xiangzhi Li. Regulation and function of histone acetyltransferase MOF[J]. Front Med, 2014, 8(1): 79-83.
[3] Li Shang, Mingrong Wang. Molecular alterations and clinical relevance in esophageal squamous cell carcinoma[J]. Front Med, 2013, 7(4): 401-410.
[4] Fen LAN, Shengdao XIONG, Weining XIONG, Guopeng XU, Xiaoxia LU. Expression of Syk in non-small cell lung cancer and its relationship with clinicopathological parameters[J]. Front Med Chin, 2009, 3(1): 41-44.
[5] ZOU Yunfeng, NIU Piye, GONG Zhiyong, YANG Jin, YUAN Jing, WU Tangchun, CHEN Xuemin. Relationship between reactive oxygen species and sodium-selenite-induced DNA damage in HepG2 cells[J]. Front. Med., 2007, 1(3): 327-332.
Full text