Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2011, Vol. 5 Issue (1) : 40-44     DOI: 10.1007/s11684-011-0108-z
REVIEW |
Stem cell niches and endogenous electric fields in tissue repair
Li LI, Jianxin JIANG()
State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
Download: PDF(206 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

Adult stem cells are responsible for homeostasis and repair of many tissues. Endogenous adult stem cells reside in certain regions of organs, known as the stem cell niche, which is recognized to have an important role in regulating tissue maintenance and repair. In wound healing and tissue repair, stem cells are mobilized and recruited to the site of wound, and participate in the repair process. Many regulatory factors are involved in the stem cell-based repair process, including stem cell niches and endogenous wound electric fields, which are present at wound tissues and proved to be important in guiding wound healing. Here we briefly review the role of stem cell niches and endogenous electric fields in tissue repair, and hypothesize that endogenous electric fields become part of stem cell niche in the wound site.

Keywords stem cell      stem cell niche      electric field      tissue repair     
Corresponding Authors: JIANG Jianxin,Email:hellojjx@126.com   
Issue Date: 05 March 2011
URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-011-0108-z     OR     http://academic.hep.com.cn/fmd/EN/Y2011/V5/I1/40
Fig.1  Model for a stem cell niche in a skin wound. A stem cell niche is involved of stem cell itself; stromal support cells; extracellular matrix proteins; blood vessels and neural inputs. In a wound site, electric fields arise, last for hours and days until the wound heals. So there is a spatial and time relationship between electric fields and stem cells at the wound site. Based on these, we hypothesize that endogenous wound electric fields exert effects on local stem cells and is one part of local stem cell niche.
Fig.2  Perpendicular reorientation of human mesenchymal stem cells under electric stimulation. Before electric stimulation, human umbilical cord mesenchymal stem cells were radomly oriented. After 200mV/mm electrical stimulation for 5 hours, these cells re-oriented perpendicularly to the EF direction. Bar=100 μm
1 Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev , 2003, 13(5): 543–550
doi: 10.1016/j.gde.2003.08.012 pmid:14550422
2 Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol , 2003, 58: 1–26
doi: 10.1016/S0070-2153(03)58001-2 pmid:14711011
3 Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester J V, Bourne H R, Devreotes P N, McCaig C D, Penninger J M. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature , 2006, 442(7101): 457–460
doi: 10.1038/nature04925 pmid:16871217
4 Scadden D T. The stem-cell niche as an entity of action. Nature , 2006, 441(7097): 1075–1079
doi: 10.1038/nature04957 pmid:16810242
5 Jones D L, Wagers A J. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol , 2008, 9(1): 11–21
doi: 10.1038/nrm2319 pmid:18097443
6 Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell , 2004, 116(6): 769–778
doi: 10.1016/S0092-8674(04)00255-7 pmid:15035980
7 Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells , 1978, 4(1-2): 7–25
pmid:747780
8 Nie D. Cancer stem cell and niche. Front Biosci (Schol Ed) , 2010, 2(1): 184–193 (Schol Ed)
doi: 10.2741/s56 pmid:20036939
9 King F J, Lin H. Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development , 1999, 126(9): 1833–1844
pmid:10101118
10 Xie T, Spradling A C. A niche maintaining germ line stem cells in the Drosophila ovary. Science , 2000, 290(5490): 328–330
doi: 10.1126/science.290.5490.328 pmid:11030649
11 Tumbar T, Guasch G, Greco V, Blanpain C, Lowry W E, Rendl M, Fuchs E. Defining the epithelial stem cell niche in skin. Science , 2004, 303(5656): 359–363
doi: 10.1126/science.1092436 pmid:14671312
12 Yen T H, Wright N A. The gastrointestinal tract stem cell niche. Stem Cell Rev , 2006, 2(3): 203–212
doi: 10.1007/s12015-006-0048-1 pmid:17625256
13 Conover J C, Notti R Q. The neural stem cell niche. Cell Tissue Res , 2008, 331(1): 211–224
doi: 10.1007/s00441-007-0503-6 pmid:17922142
14 Mitsiadis T A, Barrandon O, Rochat A, Barrandon Y, De Bari C. Stem cell niches in mammals. Exp Cell Res , 2007, 313(16): 3377–3385
doi: 10.1016/j.yexcr.2007.07.027 pmid:17764674
15 Ohshima H, Nakasone N, Hashimoto E, Sakai H, Nakakura-Ohshima K, Harada H. The eternal tooth germ is formed at the apical end of continuously growing teeth. Arch Oral Biol , 2005, 50(2): 153–157
doi: 10.1016/j.archoralbio.2004.09.008 pmid:15721143
16 Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol , 2006, 6(2): 93–106
doi: 10.1038/nri1779 pmid:16491134
17 Mohyeldin A, Garzón-Muvdi T, Qui?ones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell , 2010, 7(2): 150–161
doi: 10.1016/j.stem.2010.07.007 pmid:20682444
18 Moore K A, Lemischka I R. Stem cells and their niches. Science , 2006, 311(5769): 1880–1885
doi: 10.1126/science.1110542 pmid:16574858
19 Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA , 2003, 100(90001 Suppl 1): 11830–11835
doi: 10.1073/pnas.1734203100 pmid:12913119
20 Morris R J, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin J S, Sawicki J A, Cotsarelis G. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol , 2004, 22(4): 411–417
doi: 10.1038/nbt950 pmid:15024388
21 Morris R J, Potten C S. Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif , 1994, 27(5): 279–289
doi: 10.1111/j.1365-2184.1994.tb01425.x pmid:10465012
22 Cotsarelis G, Sun T T, Lavker R M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell , 1990, 61(7): 1329–1337
doi: 10.1016/0092-8674(90)90696-C pmid:2364430
23 Luo J, Daniels S B, Lennington J B, Notti R Q, Conover J C. The aging neurogenic subventricular zone. Aging Cell , 2006, 5(2): 139–152
doi: 10.1111/j.1474-9726.2006.00197.x pmid:16626393
24 Luskin M B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron , 1993, 11(1): 173–189
doi: 10.1016/0896-6273(93)90281-U pmid:8338665
25 Menn B, Garcia-Verdugo J M, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci , 2006, 26(30): 7907–7918
doi: 10.1523/JNEUROSCI.1299-06.2006 pmid:16870736
26 Seri B, García-Verdugo J M, Collado-Morente L, McEwen B S, Alvarez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol , 2004, 478(4): 359–378 15384070
doi: 10.1002/cne.20288
27 Park H C, Yasuda K, Kuo M C, Ni J, Ratliff B B, Chander P N, Goligorsky M S. Renal capsule as a stem cell niche. Am J Physiol Renal Physiol , 2010, 67(5): 1254–1262
doi: 10.1152/ajprenal.00406.2009 pmid:20200095
28 Kim K, Lee K M, Han D J, Yu E, Cho Y M. Adult stem cell-like tubular cells reside in the corticomedullary junction of the kidney. Int J Clin Exp Pathol , 2008, 1(3): 232–241
pmid:18784815
29 Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins R W, Lecapitaine N, Cascapera S, Beltrami A P, D’Alessandro D A, Zias E, Quaini F, Urbanek K, Michler R E, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci USA , 2007, 104(35): 14068–14073
doi: 10.1073/pnas.0706760104 pmid:17709737
30 Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA , 2006, 103(24): 9226–9231
doi: 10.1073/pnas.0600635103 pmid:16754876
31 Zhang J, Niu C, Ye L, Huang H, He X, Tong W G, Ross J, Haug J, Johnson T, Feng J Q, Harris S, Wiedemann L M, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature , 2003, 425(6960): 836–841
doi: 10.1038/nature02041 pmid:14574412
32 Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh G Y, Suda T. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell , 2004, 118(2): 149–161
doi: 10.1016/j.cell.2004.07.004 pmid:15260986
33 Kiel M J, Yilmaz O H, Iwashita T, Yilmaz O H, Terhorst C, Morrison S J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell , 2005, 121(7): 1109–1121
doi: 10.1016/j.cell.2005.05.026 pmid:15989959
34 Kopp H G, Avecilla S T, Hooper A T, Rafii S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) , 2005, 20(5): 349–356
doi: 10.1152/physiol.00025.2005 pmid:16174874
35 Zhang J, Li L. Stem cell niche: microenvironment and beyond. J Biol Chem , 2008, 283(15): 9499–9503
doi: 10.1074/jbc.R700043200 pmid:18272517
36 Barker A T, Jaffe L F, Vanable J W Jr. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol , 1982, 242(3): R358–R366
pmid:7065232
37 Candia O A. Electrolyte and fluid transport across corneal, conjunctival and lens epithelia. Exp Eye Res , 2004, 78(3): 527–535
doi: 10.1016/j.exer.2003.08.015 pmid:15106931
38 Mukerjee E V, Isseroff R R, Nuccitelli R, Collins S D, Smith R L. Microneedle array for measuring wound generated electric fields. Conf Proc IEEE Eng Med Biol Soc , 2006, 1: 4326–4328
doi: 10.1109/IEMBS.2006.260205 pmid:17947077
39 Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith P J. Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen , 2008, 16(3): 432–441
doi: 10.1111/j.1524-475X.2008.00389.x pmid:18471262
40 McCaig C D, Rajnicek A M, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev , 2005, 85(3): 943–978
doi: 10.1152/physrev.00020.2004 pmid:15987799
41 Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol , 2009, 20(6): 674–682
doi: 10.1016/j.semcdb.2008.12.009 pmid:19146969
42 Song B, Zhao M, Forrester J V, McCaig C D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA , 2002, 99(21): 13577–13582
doi: 10.1073/pnas.202235299 pmid:12368473
43 Arocena M, Zhao M, Collinson J M, Song B. A time-lapse and quantitative modelling analysis of neural stem cell motion in the absence of directional cues and in electric fields. J Neurosci Res , 2010, 88(15): 3267–3274
doi: 10.1002/jnr.22502 pmid:20890991
44 Ariza C A, Fleury A T, Tormos C J, Petruk V, Chawla S, Oh J, Sakaguchi D S, Mallapragada S K. The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev , 2010, 6(4): 585–600
doi: 10.1007/s12015-010-9171-0 pmid:20665129
45 Hammerick K E, Longaker M T, Prinz F B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun , 2010, 397(1): 12–17
doi: 10.1016/j.bbrc.2010.05.003 pmid:20452327
46 Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry , 2006, 69(2): 133–141
doi: 10.1016/j.bioelechem.2005.11.007 pmid:16473050
47 Tandon N, Goh B, Marsano A, Chao P H, Montouri-Sorrentino C, Gimble J, Vunjak-Novakovic G. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conf Proc IEEE Eng Med Biol Soc , 2009, 2009(1): 6517–6521
pmid:19964171
48 Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res , 2009, 315(20): 3611–3619
doi: 10.1016/j.yexcr.2009.08.015 pmid:19720058
[1] Nan Ding,Jiafei Xi,Yanming Li,Xiaoyan Xie,Jian Shi,Zhaojun Zhang,Yanhua Li,Fang Fang,Sihan Wang,Wen Yue,Xuetao Pei,Xiangdong Fang. Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation[J]. Front. Med., 2016, 10(3): 297-310.
[2] Yuting Tan,Han Liu,Saijuan Chen. Mutant DNA methylation regulators endow hematopoietic stem cells with the preleukemic stem cell property, a requisite of leukemia initiation and relapse[J]. Front. Med., 2015, 9(4): 412-420.
[3] Lanping Xu,Huanling Zhu,Jianda Hu,Depei Wu,Hao Jiang,Qian Jiang,Xiaojun Huang. Superiority of allogeneic hematopoietic stem cell transplantation to nilotinib and dasatinib for adult patients with chronic myelogenous leukemia in the accelerated phase[J]. Front. Med., 2015, 9(3): 304-311.
[4] Yingchen Li,Guoheng Hu,Qilai Cheng. Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges[J]. Front. Med., 2015, 9(1): 20-29.
[5] Hai Wang,Qian Zhang,Xiangdong Fang. Transcriptomics and proteomics in stem cell research[J]. Front. Med., 2014, 8(4): 433-444.
[6] Bao-Zhu Yuan,Junzhi Wang. The regulatory sciences for stem cell-based medicinal products[J]. Front. Med., 2014, 8(2): 190-200.
[7] Yang Yang, Xiaofei Han, Jingyun Guan, Xiangzhi Li. Regulation and function of histone acetyltransferase MOF[J]. Front Med, 2014, 8(1): 79-83.
[8] Douglas D. Fang, Joan Cao, Jitesh P. Jani, Konstantinos Tsaparikos, Alessandra Blasina, Jill Kornmann, Maruja E. Lira, Jianying Wang, Zuzana Jirout, Justin Bingham, Zhou Zhu, Yin Gu, Gerrit Los, Zdenek Hostomsky, Todd VanArsdale. Combined gemcitabine and CHK1 inhibitor treatment induces apoptosis resistance in cancer stem cell-like cells enriched with tumor spheroids from a non-small cell lung cancer cell line[J]. Front Med, 2013, 7(4): 462-476.
[9] Siming Yang, Kui Ma, Changjiang Feng, Yan Wu, Yao Wang, Sha Huang, Xiaobing Fu. Capacity of human umbilical cord-derived mesenchymal stem cells to differentiate into sweat gland-like cells: a preclinical study[J]. Front Med, 2013, 7(3): 345-353.
[10] Xiaodong Mo, Xiaojun Huang. Advancement of human leukocyte antigen-partially matched related hematopoietic stem cell transplantation[J]. Front Med, 2013, 7(3): 306-315.
[11] Beicheng Sun, Michael Karin. Inflammation and liver tumorigenesis[J]. Front Med, 2013, 7(2): 242-254.
[12] Douglas D. Fang, Danyi Wen, Yajun Xu. Identification of cancer stem cells provides novel tumor models for drug discovery[J]. Front Med, 2012, 6(2): 112-121.
[13] Siming Yang, Sha Huang, Changjiang Feng, Xiaobing Fu. Umbilical cord-derived mesenchymal stem cells: strategies, challenges, and potential for cutaneous regeneration[J]. Front Med, 2012, 6(1): 41-47.
[14] Shihua Wang, Xuebin Qu, Robert Chunhua Zhao. Mesenchymal stem cells hold promise for regenerative medicine[J]. Front Med, 2011, 5(4): 372-378.
[15] Chuanfeng Wu, Cynthia E. Dunbar. Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity[J]. Front Med, 2011, 5(4): 356-371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed