Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2011, Vol. 5 Issue (1) : 61-69     DOI: 10.1007/s11684-011-0122-1
Tissue engineering of cartilage, tendon and bone
Hengyun SUN1,2, Wei LIU1,2, Guangdong ZHOU1,2, Wenjie ZHANG1,2, Lei CUI1,2, Yilin CAO1,2()
1. Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China; 2. National Tissue Engineering Center of China, Shanghai 200241, China
Download: PDF(652 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Tissue engineering aims to produce a functional tissue replacement to repair defects. Tissue reconstruction is an essential step toward the clinical application of engineered tissues. Significant progress has recently been achieved in this field. In our laboratory, we focus on construction of cartilage, tendon and bone. The purpose of this review was to summarize the advances in the engineering of these three tissues, particularly focusing on tissue regeneration and defect repair in our laboratory. In cartilage engineering, articular cartilage was reconstructed and defects were repaired in animal models. More sophisticated tissues, such as cartilage in the ear and trachea, were reconstructed both in vitro and in vivo with specific shapes and sizes. Engineered tendon was generated in vitro and in vivo in many animal models with tenocytes or dermal fibroblasts in combination with appropriate mechanical loading. Cranial and limb bone defects were also successfully regenerated and repaired in large animals. Based on sophisticated animal studies, several clinical trials of engineered bone have been launched with promising preliminary results, displaying the high potential for clinical application.

Keywords Tissue engineering      cartilage      bone      tendon      recent advances     
Corresponding Authors: CAO Yilin,   
Issue Date: 05 March 2011
URL:     OR
Fig.1  Comparison of chondrocyte- and BMSC-mediated repair of osteochondral defects at six months. Gross view (above) and cross-sectional view (below) of repaired articular cartilage defects were shown (arrowheads indicate the repaired defects). (Reprinted by permission of )
Fig.2  Preparation and shape analysis of the ear-shaped scaffolds and constructs. 3D image of the normal ear; the mirror image of ; The half-sized resin positive mold; outer part of the negative mold (left) and inner part of the negative mold (right); the ear-shaped PLA/PGA scaffold; laser scan image of ; color map of ; laser scan image of ; color map of , compared to ; ear-shaped cell-scaffold constructs at 12 weeks . color map of , compared to . (Reprinted by permission of )
Fig.3  Gross view , H&E staining , polarized microscopic view and transmission electron microscopic view of engineered tendons with mechanical loading for 14 weeks. (Reprinted by permission of )
Fig.4  Gross view of repaired mandibles with BMSCs/coral grafts and contralateral bones at 32 weeks postoperation. (Reprinted by permission of )
Fig.5  X-ray evaluation of tissue-engineered bone repair of a femoral bone defect at 8 months post-operation. Control group; Experimental group. (Reprinted by permission of )
1 Langer R, Vacanti J P. Tissue engineering. Science , 1993, 260(5110): 920–926
doi: 8493529" target="_blank">10.1126/science. pmid:8493529 pmid:8493529
2 Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Yasui N, Owaki H, Ono K. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg Br , 1989, 71(1): 74–80
3 van Susante J L, Buma P, Homminga G N, van den Berg W B, Veth R P. Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects. A pilot study in the goat. Biomaterials , 1998, 19(24): 2367–2374
doi: 10.1016/S0142-9612(98)00158-6 pmid:9884051
4 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med , 1994, 331(14): 889–895
doi: 10.1056/NEJM199410063311401 pmid:8078550
5 Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, Wang J, Cui Y, Yang G, Liu D, Wu J, Xu R, Buonocore S D, Cao Y. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng , 2002, 8(4): 709–721
doi: 10.1089/107632702760240616 pmid:12202009
6 Zhou G, Liu W, Cui L, Wang X, Liu T, Cao Y. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng , 2006, 12(11): 3209–3221
doi: 10.1089/ten.2006.12.3209 pmid:17518635
7 Cao Y, Vacanti J P, Paige K T, Upton J, Vacanti C A. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg , 1997, 100(2): 297–302
doi: 10.1097/00006534-199708000-00001 pmid:9252594
8 Liu Y, Zhang L, Zhou G, Li Q, Liu W, Yu Z, Luo X, Jiang T, Zhang W, Cao Y. In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials , 2010, 31(8): 2176–2183
doi: 10.1016/j.biomaterials.2009.11.080 pmid:20022366
9 Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs B G, Aigner T, Richter W. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum , 2006, 54(10): 3254–3266
doi: 10.1002/art.22136 pmid:17009260
10 Liu K, Zhou G D, Liu W, Zhang W J, Cui L, Liu X, Liu T Y, Cao Y. The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Biomaterials , 2008, 29(14): 2183–2192
doi: 10.1016/j.biomaterials.2008.01.021 pmid:18289667
11 Liu X, Sun H, Yan D, Zhang L, Lv X, Liu T, Zhang W, Liu W, Cao Y, Zhou G. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials , 2010, 31(36): 9406–9414
doi: 10.1016/j.biomaterials.2010.08.052 pmid:21056466
12 Yang H N, Park J S, Na K, Woo D G, Kwon Y D, Park K H. The use of green fluorescence gene (GFP)-modified rabbit mesenchymal stem cells (rMSCs) co-cultured with chondrocytes in hydrogel constructs to reveal the chondrogenesis of MSCs. Biomaterials , 2009, 30(31): 6374–6385
doi: 10.1016/j.biomaterials.2009.07.062 pmid:19682739
13 Vinatier C, Mrugala D, Jorgensen C, Guicheux J, No?l D. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol , 2009, 27(5): 307–314
doi: 10.1016/j.tibtech.2009.02.005 pmid:19329205
14 Luo X, Zhou G, Liu W, Zhang W J, Cen L, Cui L, Cao Y. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomed Mater , 2009, 4(2): 025006
doi: 10.1088/1748-6041/4/2/025006 pmid:19258698
15 Macchiarini P, Jungebluth P, Go T, Asnaghi M A, Rees L E, Cogan T A, Dodson A, Martorell J, Bellini S, Parnigotto P P, Dickinson S C, Hollander A P, Mantero S, Conconi M T, Birchall M A. Clinical transplantation of a tissue-engineered airway. Lancet , 2008, 372(9655): 2023–2030
doi: 10.1016/S0140-6736(08)61598-6 pmid:19022496
16 Cao Y, Liu Y, Liu W, Shan Q, Buonocore S D, Cui L. Bridging tendon defects using autologous tenocyte engineered tendon in a hen model. Plast Reconstr Surg , 2002, 110(5): 1280–1289
doi: 10.1097/00006534-200210000-00011 pmid:12360068
17 Wang B, Liu W, Zhang Y, Jiang Y, Zhang W J, Zhou G, Cui L, Cao Y. Engineering of extensor tendon complex by an ex vivo approach. Biomaterials , 2008, 29(20): 2954–2961
doi: 10.1016/j.biomaterials.2008.03.038 pmid:18423583
18 Liu W, Chen B, Deng D, Xu F, Cui L, Cao Y. Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Eng , 2006, 12(4): 775–788
doi: 10.1089/ten.2006.12.775 pmid:16674291
19 Cao D, Liu W, Wei X, Xu F, Cui L, Cao Y. In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary report. Tissue Eng , 2006, 12(5): 1369–1377
doi: 10.1089/ten.2006.12.1369 pmid:16771649
20 Deng D, Liu W, Xu F, Yang Y, Zhou G, Zhang W J, Cui L, Cao Y. Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials , 2009, 30(35): 6724–6730
doi: 10.1016/j.biomaterials.2009.08.054 pmid:19782396
21 Muraglia A, Martin I, Cancedda R, Quarto R. A nude mouse model for human bone formation in unloaded conditions. Bone , 1998, 22(5 Suppl): 131S–134S
doi: 10.1016/S8756-3282(98)00009-X pmid:9600769
22 Bruder S P, Kurth A A, Shea M, Hayes W C, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res , 1998, 16(2): 155–162
doi: 10.1002/jor.1100160202 pmid:9621889
23 Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res , 2000, 49(3): 328–337
doi: 10.1002/(SICI)1097-4636(20000305)49:3<328::AID-JBM5>3.0.CO;2-Q pmid:10602065
24 Bruder S P, Kraus K H, Goldberg V M, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am , 1998, 80(7): 985–996
25 Arinzeh T L, Peter S J, Archambault M P, van den Bos C, Gordon S, Kraus K, Smith A, Kadiyala S. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am , 2003, 85-A(10): 1927–1935
26 Aggarwal S, Pittenger M F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood , 2005, 105(4): 1815–1822
doi: 10.1182/blood-2004-04-1559 pmid:15494428
27 Kuo Y R, Goto S, Shih H S, Wang F S, Lin C C, Wang C T, Huang E Y, Chen C L, Wei F C, Zheng X X, Lee W P. Mesenchymal stem cells prolong composite tissue allotransplant survival in a swine model. Transplantation , 2009, 87(12): 1769–1777
doi: 10.1097/TP.0b013e3181a664f1 pmid:19543052
28 Zhou H P, Yi D H, Yu S Q, Sun G C, Cui Q, Zhu H L, Liu J C, Zhang J Z, Wu T J. Administration of donor-derived mesenchymal stem cells can prolong the survival of rat cardiac allograft. Transplant Proc , 2006, 38(9): 3046–3051
doi: 10.1016/j.transproceed.2006.10.002 pmid:17112896
29 Le Blanc K, Rasmusson I, Sundberg B, G?therstr?m C, Hassan M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet , 2004, 363(9419): 1439–1441
doi: 10.1016/S0140-6736(04)16104-7 pmid:15121408
30 Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng , 2007, 13(6): 1185–1195
doi: 10.1089/ten.2006.0315 pmid:17518704
31 Shang Q, Wang Z, Liu W, Shi Y, Cui L, Cao Y. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J Craniofac Surg , 2001, 12(6): 586–593, discussion 594-595
doi: 10.1097/00001665-200111000-00017 pmid:11711828
32 Weng Y, Wang M, Liu W, Hu X, Chai G, Yan Q, Zhu L, Cui L, Cao Y. Repair of experimental alveolar bone defects by tissue-engineered bone. Tissue Eng , 2006, 12(6): 1503–1513
doi: 10.1089/ten.2006.12.1503 pmid:16846347
33 Yuan J, Cui L, Zhang W J, Liu W, Cao Y. Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials , 2007, 28(6): 1005–1013
doi: 10.1016/j.biomaterials.2006.10.015 pmid:17092556
34 Yuan J, Zhang W J, Liu G, Wei M, Qi Z L, Liu W, Cui L, Cao Y L. Repair of canine mandibular bone defects with bone marrow stromal cells and coral. Tissue Eng Part A , 2010, 16(4): 1385–1394
doi: 10.1089/ten.tea.2009.0472 pmid:19925049
35 Zhu L, Liu W, Cui L, Cao Y. Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone marrow stromal cells. Tissue Eng , 2006, 12(3): 423–433
doi: 10.1089/ten.2006.12.423 pmid:16579676
36 Quarto R, Mastrogiacomo M, Cancedda R, Kutepov S M, Mukhachev V, Lavroukov A, Kon E, Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med , 2001, 344(5): 385–386
doi: 10.1056/NEJM200102013440516 pmid:11195802
37 Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng , 2007, 13(5): 947–955
doi: 10.1089/ten.2006.0271 pmid:17484701
38 Vacanti C A, Bonassar L J, Vacanti M P, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med , 2001, 344(20): 1511–1514
doi: 10.1056/NEJM200105173442004 pmid:11357154
39 Chai G, Zhang Y, Liu W, Cui L, Cao Y L. Clinical application of tissue engineered bone repair of human craniomaxillofacial bone defects. Zhonghua Yi Xue Za Zhi , 2003, 83(19): 1676–1681 (Chin Med J)
40 Zuk P A, Zhu M, Ashjian P, De Ugarte D A, Huang J I, Mizuno H, Alfonso Z C, Fraser J K, Benhaim P, Hedrick M H. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell , 2002, 13(12): 4279–4295
doi: 10.1091/mbc.E02-02-0105 pmid:12475952
41 Cowan C M, Shi Y Y, Aalami O O, Chou Y F, Mari C, Thomas R, Quarto N, Contag C H, Wu B, Longaker M T. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol , 2004, 22(5): 560–567
doi: 10.1038/nbt958 pmid:15077117
[1] Xiaosong Gu. Progress and perspectives of neural tissue engineering[J]. Front. Med., 2015, 9(4): 401-411.
[2] Wen Xue,Yan Sheng,Xiangqin Weng,Yongmei Zhu,Yan Zhao,Pengpeng Xu,Xiaochun Fei,Xiaoyan Chen,Li Wang,Weili Zhao. Clinical characteristics and prognostic factors of patients with mature T-cell lymphoid malignancies: a single-institution study of 225 cases[J]. Front. Med., 2015, 9(4): 468-477.
[3] Joseph Cannova,Peter Breslin S.J.,Jiwang Zhang. Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases[J]. Front. Med., 2015, 9(3): 288-303.
[4] Dahong Ju,Meijie Liu,Hongyan Zhao,Jun Wang. Mechanisms of “kidney governing bones” theory in traditional Chinese medicine[J]. Front. Med., 2014, 8(3): 389-393.
[5] Somanath Padhi, Renu G’ Boy Varghese, Anita Ramdas, Manjiri Dilip Phansalkar, RajLaxmi Sarangi. Hemophagocytic lymphohistiocytosis: critical reappraisal of a potentially under-recognized condition[J]. Front Med, 2013, 7(4): 492-498.
[6] Wenbo Yan, Xin Li. Impact of diabetes and its treatments on skeletal diseases[J]. Front Med, 2013, 7(1): 81-90.
[7] Eryuan Liao. FGF23 associated bone diseases[J]. Front Med, 2013, 7(1): 65-80.
[8] Zhiyuan Zhang. Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region[J]. Front Med, 2011, 5(4): 401-413.
[9] Shilin DENG MD , . Effects of exercise therapy on bone mineral density in early postmenopausal women: a controlled trial[J]. Front. Med., 2009, 3(3): 323-329.
[10] Xiaohua PAN, Shuhua YANG, Deming XIAO, Yong DAI, Lili REN. Gene expression disparity in giant cell tumor of bone[J]. Front Med Chin, 2009, 3(1): 49-56.
[11] DONG Nianguo, SHI Jiawei, CHEN Si, HONG Hao, HU Ping. Current progress on scaffolds of tissue engineering heart valves[J]. Front. Med., 2008, 2(3): 229-234.
[12] LEONG John, LI Zhaoyang, LU William. Development and clinical trial of a novel bioactive bone cement[J]. Front. Med., 2008, 2(2): 117-126.
[13] ZHANG Kaigang, ZENG Bingfang, ZHANG Changqing. Visualization of vascular ultrastructure during osteogenesis by tissue engineering technique[J]. Front. Med., 2007, 1(2): 181-184.
[14] GE Jian, LIU Jingbo. The stem cell and tissue engineering research in Chinese ophthalmology[J]. Front. Med., 2007, 1(1): 6-10.
Full text