Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2011, Vol. 5 Issue (2) : 219-228    https://doi.org/10.1007/s11684-011-0133-y
Research Article
Correlation between cold and hot pattern in traditional Chinese medicine and gene expression profiles in rheumatoid arthritis
Miao Jiang1, Cheng Xiao2, Gao Chen1,3, Cheng Lu1, Qinglin Zha4, Xiaoping Yan4, Weiping Kong4, Shijie Xu5, Dahong Ju5, Pu Xu1, Youwen Zou6, Aiping Lu1,7()
1. Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Science, Beijing 100700, China; 2. Sino-Japan Friendship Hospital, Beijing 100029, China; 3. School of Life Sciences, Hubei University, Wuhan 430062, China; 4. National Pharmaceutical Engineering Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; 5. Institute of Basic Theory, China Academy of Chinese Medical Science, Beijing 100700, China; 6. University of British Columbia, Vancouver V6T 1Z2, Canada; 7. E-Institute of Shanghai Municipal Education Commission, Shanghai TCM University, Shanghai 200032, China
 Download: PDF(798 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Clinical manifestations of rheumatoid arthritis (RA) are diversified, and based on the manifestations, the patients with RA could be classified into different patterns under traditional Chinese medicine. These patterns decide the selection of herbal prescription, and thus they can help find a subset of rheumatoid arthritis patients for a type of therapy. In the present study, we combine genome-wide expression analysis with methods of systems biology to identify the functional gene networks for the sets of clinical symptoms that comprise the major information for pattern classification. Clinical manifestations in rheumatoid arthritis were clustered with factor analysis, and two factors (similar to cold and hot patterns in traditional Chinese medicine) were found. Microarray technology was used to reveal gene expression profiles in CD4+ T cells from 21 rheumatoid arthritis patients. Protein-protein interaction information for these genes from databases and literature data was searched. The highly-connected regions were detected to infer significant complexes or pathways in this protein-protein interaction network. The significant pathways and function were extracted from these subnetworks using the Biological Network Gene Ontology tool. The genes significantly related to hot and cold patterns were identified by correlations analysis. MAPK signalling pathway, Wnt signaling pathway, and insulin signaling pathway were found to be related to hot pattern. Purine metabolism was related to both hot and cold patterns. Alanine, aspartate, and tyrosine metabolism were related to cold pattern, and histindine metabolism and lysine degradation were related to hot pattern. The results suggest that cold and hot patterns in traditional Chinese medicine were related to different pathways, and the network analysis might be used for identifying the pattern classification in other diseases.

Keywords gene expression profile      pathway      rheumatoid arthritis      traditional Chinese medicine      systems biology     
Corresponding Author(s): Lu Aiping,Email:lap64067611@126.com   
Issue Date: 05 June 2011
 Cite this article:   
Miao Jiang,Cheng Xiao,Gao Chen, et al. Correlation between cold and hot pattern in traditional Chinese medicine and gene expression profiles in rheumatoid arthritis[J]. Front Med, 2011, 5(2): 219-228.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-011-0133-y
https://academic.hep.com.cn/fmd/EN/Y2011/V5/I2/219
Factor 1Factor 2
Joint pain relieved with warming0.85
Cold feeling in joints0.59
Joint pain aggravated with cooling0.59
Hot feeling in joints0.66
Red colored joints0.55
Joint pain relieved with cooling0.30
Tab.1  Three factors obtained in factor analysis after oblique PROMAX rotation*
NameIDCoefficientP value
GABA(A) receptors associated protein like 3NM 0325680.670.0012
DKFZP586F1524 proteinNM 0155840.620.0013
MutS homolog 6 (E. coli)NM 0001790.620.0084
Huntingtin interacting protein-1-relatedAB 0145550.550.0210
Vacuolar protein sorting 45A (yeast)NM 0072590.540.0091
DnaJ (Hsp40) homolog, subfamily B, member 6NM 0054940.520.0042
2-hydroxyphytanoyl-CoA lyaseNM 0122600.510.0297
DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 26NM 0121410.510.0262
Glutamate receptor, metabotropic 4NM 0008410.500.0028
Jerky homolog (mouse)AK 025687-0.510.0121
Adenosine kinaseNM 006721-0.530.0084
N-acetyltransferase, homolog of S. cerevisiae ARD1NM 003491-0.540.0061
Similar to RIKEN cDNA 1810038N03 geneBC 008226-0.560.0021
Tab.2  TCM cold pattern (factor 1) related genes*
Fig.1  Protein–protein interaction network for TCM cold pattern related genes. The network contains 153 nodes and 1205 edges. Diamonds represent seed nodes, and Circles represent neighbor nodes. All edges represent interactions between the nodes.
Fig.2  The subnetworks made up of highly-connected regions and functions of the nodes in TCM cold pattern related genes. Diamonds represent seed nodes, and circles represent neighbor nodes. All edges represent interactions between the nodes. Clusters with score>2 were considered to be significant (it represents the log of the probability that the network was found by chance). Cluster 1 (A, score=9.15, nodes=20 and edges=183); Cluster 2 (B, score=7.32, nodes=19 and edges=139); Cluster 3 (C, score=6.14, nodes=14 and edges=86); Cluster 4 (D, score=4.46, nodes=11 and edges=49).
NameIDCoefficientP value
Defensin, alpha 4, corticostatinNM 0019250.740.0006
G protein-coupled receptorNM 0065640.710.0014
Baculoviral IAP repeat-containing 1NM 0045360.670.0021
Gamma-glutamyltransferase 2NM 304740.640.0003
Leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2NM 0058740.620.0051
Phosphomannomutase 1NM 0026760.610.0002
Hexokinase 3 (white cell)NM 0021150.610.0015
Serine/threonine protein kinase MASKNM 0165420.590.0025
Leukotriene b4 receptor (chemokine receptor-like 1)NM 0007520.590.0005
Glutamate-ammonia ligase (glutamine synthase)AL 1619520.580.0017
Beta-1,4 mannosyltransferaseNM 0191090.580.0061
Protection of telomeres 1NM 0154500.550.0082
KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2NM 0068540.550.0087
C-terminal binding protein 2NM 0228020.550.0140
S100 calcium binding protein A12 (calgranulin C)NM 0056210.540.0267
Valyl-tRNA synthetase 2NM 0062950.540.0131
Second mitochondria-derived activator of caspaseAK 0013990.530.0024
A disintegrin and metalloproteinase domain 19 (meltrin beta)NM 0332740.530.0196
Lactate dehydrogenase ANM 0055660.530.0020
Homo sapiens cDNA FLJ11458 fis, clone HEMBA1001557AK 0215200.520.0159
Nuclear autoantigenNM 0145740.520.0038
Phosphatidylinositol glycan, class KAF 0229130.520.0047
Gamma-aminobutyric acid (GABA) B receptor, 1NM 0014700.510.0030
Phospholysine phosphohistidine inorganic pyrophosphate phosphataseNM 0221260.510.0164
Thymine-DNA glycosylaseNM 0032110.510.0292
H2A histone family, member XNM 0021050.510.0110
Uridine 5' monophosphate hydrolase 1NM 0164890.500.0387
Putative methyltransferaseNM 018396-0.500.0126
Eukaryotic translation initiation factor 2C, 2AF 121255-0.500.0169
N-acylsphingosine amidohydrolase (acid ceramidase)-likeAK 024677-0.500.0089
Enoyl Coenzyme A hydratase 1, peroxisomalNM 001398-0.510.0150
Killer cell lectin-like receptor subfamily D, member 1NM 002262-0.510.0071
Isocitrate dehydrogenase 3 (NAD+) betaNM 006899-0.530.0114
Bromodomain-containing 7NM 013263-0.530.0069
Apoptosis inhibitor 5NM 006595-0.550.0008
Eukaryotic translation initiation factor 5NM 001969-0.550.0066
ErythropoietinNM 000799-0.600.0056
Tab.3  TCM hot pattern (factor 2) related genes*
Fig.3  Protein–protein interaction network for TCM hot pattern related genes. The network contains 153 nodes and 1205 edges. Diamonds represent seed nodes, and circles represent neighbor nodes. All edges represent interactions between the nodes.
Fig.4  The subnetworks made up of highly-connected regions and functions of the nodes in TCM hot pattern related genes. Diamonds represent seed nodes, and circles represent neighbor nodes. All edges represent interactions between the nodes. Clusters with score>2 were considered to be significant (it represents the log of the probability that the network was found by chance). Cluster 1 (A, score=57.71, nodes=118, and edges=6810); Cluster 2 (B, score=27.42, nodes=66, and edges=1810); Cluster 3 (C, score=14.32, nodes=34 and edges=487); Cluster 4 (D, score=13.14, nodes=35, and edges=460); Cluster 5 (E, score=12.64, nodes=28, and edges=354); Cluster 6 (F, score=7.36, nodes=44, and edges=324); Cluster 7 (G, score=6.04, nodes=23, and edges=139); Cluster 8 (H, score=5.57, nodes=14, and edges=78); Cluster 9 (I, score=5.46, nodes=35, and edges=191); Cluster 10 (J, score=4.18, nodes=16, and edges=67); Cluster 11 (K, score=3.78, nodes=9, and edges=34); Cluster 12 (M, score=2.63, nodes=8, and edges=21); Cluster 13 (N, score=2.5, nodes=40, and edges=100); Cluster 14 (O, score=2.5, nodes=6, and edges=15); Cluster 15 (P, score=2.1, nodes=20, and edges=42).
TCM cold patternTCM hot pattern
Inflammation and immune responseMAPK signaling pathway, complement and coagulation cascades, VEGF signaling pathway, cell adhesion molecules, antigen processing and presentation
Tumor and developmentWnt signaling pathway
Insulin signaling pathwayInsulin signaling pathway
OxidationNADH dehydrogenase, oxidative phosphorylation
Amino acid metabolismAlanine, aspartate, tyrosineGlutamate, glutathione, tryptophan
Purine metabolismPurine metabolismPurine metabolism
Lipid metabolismcellular lipid matabolic processSphingolipid metabolism, lipid metabolic process and phospholipid metabolic process
Tab.4  Different major pathways related to different sets of TCM patterns
1 Hochberg MC, Spector TD. Epidemiology of rheumatoid arthritis: update. Epidemiol Rev 1990; 12(1): 247–252
pmid:2286222
2 Seemayer CA, Distler O, Kuchen S, Müller-Ladner U, Michel BA, Neidhart M, Gay RE, Gay S. Die Rheumatoide Arthritis: Neuentwicklungen in der Pathogenese unter besonderer Berücksichtigung der synovialen Fibroblasten. Z Rheumatol 2001; 60(5): 309–318 (Rheumatoid arthritis: new developments in the pathogenesis with special reference to synovial fibroblasts)
doi: 10.1007/s003930170030 pmid:Müller-Ladner UMichel BANeidhart MGay REGay S11759230
3 Schurigt U, Pfirschke C, Irmler IM, Hückel M, Gajda M, Janik T, Baumgrass R, Bernhagen J, Br?uer R. Interactions of T helper cells with fibroblast-like synoviocytes: up-regulation of matrix metalloproteinases by macrophage migration inhibitory factor from both Th1 and Th2 cells. Arthritis Rheum 2008; 58(10): 3030–3040
doi: 10.1002/art.23904 pmid:Hückel MGajda MJanik TBaumgrass RBernhagen JBr?uer R18821693
4 Centola M, Frank MB, Bolstad AI, Alex P, Szanto A, Zeher M, Hjelmervik TO, Jonsson R, Nakken B, Szegedi G, Szodoray P. Genome-scale assessment of molecular pathology in systemic autoimmune diseases using microarray technology: a potential breakthrough diagnostic and individualized therapy-design tool. Scand J Immunol 2006; 64(3): 236–242
doi: 10.1111/j.1365-3083.2006.01802.x pmid:16918692
5 He Y, Lu A, Zha Y, Tsang I. Differential effect on symptoms treated with traditional Chinese medicine and western combination therapy in RA patients. Complement Ther Med 2008; 16(4): 206–211
doi: 10.1016/j.ctim.2007.08.005 pmid:18638711
6 Lu C, Zha Q, Chang A, He Y, Lu A. Pattern differentiation in Traditional Chinese Medicine can help define specific indications for biomedical therapy in the treatment of rheumatoid arthritis. J Altern Complement Med 2009; 15(9): 1021–1025
doi: 10.1089/acm.2009.0065 pmid:19757979
7 van der Pouw Kraan TC, van Gaalen FA, Huizinga TW, Pieterman E, Breedveld FC, Verweij CL. Discovery of distinctive gene expression profiles in rheumatoid synovium using cDNA microarray technology: evidence for the existence of multiple pathways of tissue destruction and repair. Genes Immun 2003; 4(3): 187–196
doi: 10.1038/sj.gene.6363975 pmid:12700593
8 Butte A. The use and analysis of microarray data. Nat Rev Drug Discov 2002; 1(12): 951–960
doi: 10.1038/nrd961 pmid:12461517
9 Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H, Aderem A. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 2006; 441(7090): 173–178
doi: 10.1038/nature04768 pmid:16688168
10 Vailaya A, Bluvas P, Kincaid R, Kuchinsky A, Creech M, Adler A. An architecture for biological information extraction and representation. Bioinformatics 2005; 21(4): 430–438
doi: 10.1093/bioinformatics/bti187 pmid:15608051
11 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498–2504
doi: 10.1101/gr.1239303 pmid:14597658
12 Li M, Chen JE, Wang JX, Hu B, Chen G. Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinformatics 2008; 9(1): 398
doi: 10.1186/1471-2105-9-398 pmid:18816408
13 Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005; 21(16): 3448–3449
doi: 10.1093/bioinformatics/bti551 pmid:15972284
14 Yoshizawa T, Hammaker D, Boyle DL, Corr M, Flavell R, Davis R, Schett G, Firestein GS. Role of MAPK kinase 6 in arthritis: distinct mechanism of action in inflammation and cytokine expression. J Immunol 2009; 183(2): 1360–1367
doi: 10.4049/jimmunol.0900483 pmid:19561096
16 Hoberg M, Rudert M, Pap T, Klein G, Gay S, Aicher WK. Attachment to laminin-111 facilitates transforming growth factor beta-induced expression of matrix metalloproteinase-3 in synovial fibroblasts. Ann Rheum Dis 2007; 66(4): 446–451
doi: 10.1136/ard.2006.060228 pmid:17124250
17 Wahl SM, Chen W. Transforming growth factor-beta-induced regulatory T cells referee inflammatory and autoimmune diseases. Arthritis Res Ther 2005; 7(2): 62–68
doi: 10.1186/ar1504 pmid:15743491
18 Davies EV, Hallett MB. Cytosolic Ca2+ signalling in inflammatory neutrophils: implications for rheumatoid arthritis (Review). Int J Mol Med 1998; 1(2): 485–490 (Review)
pmid:9852254
19 Sweeney ZK, Minatti A, Button DC, Patrick S. Small-molecule inhibitors of store-operated calcium entry. ChemMedChem 2009; 4(5): 706–718
doi: 10.1002/cmdc.200800452 pmid:19330784
20 Carvalho JF, Blank M, Shoenfeld Y. Vascular endothelial growth factor (VEGF) in autoimmune diseases. J Clin Immunol 2007; 27(3): 246–256
doi: 10.1007/s10875-007-9083-1 pmid:17340192
21 Hao Q, Wang L, Tang H. Vascular endothelial growth factor induces protein kinase D-dependent production of proinflammatory cytokines in endothelial cells. Am J Physiol Cell Physiol 2009; 296(4): C821–C827
doi: 10.1152/ajpcell.00504.2008 pmid:19176759
22 Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 2006; 12(17): 5018–5022
doi: 10.1158/1078-0432.CCR-06-1520 pmid:16951216
23 Smitten AL, Simon TA, Hochberg MC, Suissa S. A meta-analysis of the incidence of malignancy in adult patients with rheumatoid arthritis. Arthritis Res Ther 2008; 10(2): R45
doi: 10.1186/ar2404 pmid:18433475
24 Lotz M, Moats T, Villiger PM. Leukemia inhibitory factor is expressed in cartilage and synovium and can contribute to the pathogenesis of arthritis. J Clin Invest 1992; 90(3): 888–896
doi: 10.1172/JCI115964 pmid:1522240
25 Lie DC, Colamarino SA, Song HJ, Désiré L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005; 437(7063): 1370–1375
doi: 10.1038/nature04108 pmid:16251967
26 Zhao J, Kim KA, Abo A. Tipping the balance: modulating the Wnt pathway for tissue repair. Trends Biotechnol 2009; 27(3): 131–136
doi: 10.1016/j.tibtech.2008.11.007 pmid:19187992
27 Katoh M, Katoh M. STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer (Review). Int J Mol Med 2007; 19(2): 273–278
pmid:17203201
29 Liu G, Rondinone CM. JNK: bridging the insulin signaling and inflammatory pathway. Curr Opin Investig Drugs 2005; 6(10): 979–987
pmid:16259218
30 Araújo EP, De Souza CT, Ueno M, Cintra DE, Bertolo MB, Carvalheira JB, Saad MJ, Velloso LA. Infliximab restores glucose homeostasis in an animal model of diet-induced obesity and diabetes. Endocrinology 2007; 148(12): 5991–5997
doi: 10.1210/en.2007-0132 pmid:17761768
31 Page TH, Smolinska M, Gillespie J, Urbaniak AM, Foxwell BM. Tyrosine kinases and inflammatory signalling. Curr Mol Med 2009; 9(1): 69–85
doi: 10.2174/156652409787314507 pmid:19199943
32 Lee YH, Choi SJ, Ji JD, Song GG. Serum creatine kinase in patients with rheumatic diseases. Clin Rheumatol 2000; 19(4): 296–300
doi: 10.1007/s100670070049 pmid:10941812
33 Suderman M, Hallett M. Tools for visually exploring biological networks. Bioinformatics 2007; 23(20): 2651–2659
doi: 10.1093/bioinformatics/btm401 pmid:17720984
34 Forrest CM, Harman G, McMillan RB, Stoy N, Stone TW, Darlington LG. Modulation of cytokine release by purine receptors in patients with rheumatoid arthritis. Clin Exp Rheumatol 2005; 23(1): 89–92
pmid:15789893
35 Morgan SL, Oster RA, Lee JY, Alarcón GS, Baggott JE. The effect of folic acid and folinic acid supplements on purine metabolism in methotrexate-treated rheumatoid arthritis. Arthritis Rheum 2004; 50(10): 3104–3111 15476202
doi: 10.1002/art.20516
[1] Zixin Shu, Yana Zhou, Kai Chang, Jifen Liu, Xiaojun Min, Qing Zhang, Jing Sun, Yajuan Xiong, Qunsheng Zou, Qiguang Zheng, Jinghui Ji, Josiah Poon, Baoyan Liu, Xuezhong Zhou, Xiaodong Li. Clinical features and the traditional Chinese medicine therapeutic characteristics of 293 COVID-19 inpatient cases[J]. Front. Med., 2020, 14(6): 760-775.
[2] Qingwei Li, Han Wang, Xiuyang Li, Yujiao Zheng, Yu Wei, Pei Zhang, Qiyou Ding, Jiaran Lin, Shuang Tang, Yikun Zhao, Linhua Zhao, Xiaolin Tong. The role played by traditional Chinese medicine in preventing and treating COVID-19 in China[J]. Front. Med., 2020, 14(5): 681-688.
[3] Heng Fang, Aihua Zhang, Xiaohang Zhou, Jingbo Yu, Qi Song, Xijun Wang. High-throughput metabolomics reveals the perturbed metabolic pathways and biomarkers of Yang Huang syndrome as potential targets for evaluating the therapeutic effects and mechanism of geniposide[J]. Front. Med., 2020, 14(5): 651-663.
[4] Mengxue Huang, Jingjing Wang, Runshun Zhang, Zhuying Ni, Xiaoying Liu, Wenwen Liu, Weilian Kong, Yao Chen, Tiantian Huang, Guihua Li, Dan Wei, Jianzhong Liu, Xuezhong Zhou. Symptom network topological features predict the effectiveness of herbal treatment for pediatric cough[J]. Front. Med., 2020, 14(3): 357-367.
[5] Qiqi Zhao, Xin Gao, Guangli Yan, Aihua Zhang, Hui Sun, Ying Han, Wenxiu Li, Liang Liu, Xijun Wang. Chinmedomics facilitated quality-marker discovery of Sijunzi decoction to treat spleen qi deficiency syndrome[J]. Front. Med., 2020, 14(3): 335-356.
[6] Yuan Gao, Zhilei Wang, Jinfa Tang, Xiaoyi Liu, Wei Shi, Nan Qin, Xiaoyan Wang, Yu Pang, Ruisheng Li, Yaming Zhang, Jiabo Wang, Ming Niu, Zhaofang Bai, Xiaohe Xiao. New incompatible pair of TCM: Epimedii Folium combined with Psoraleae Fructus induces idiosyncratic hepatotoxicity under immunological stress conditions[J]. Front. Med., 2020, 14(1): 68-80.
[7] Hudan Pan, Yanfang Zheng, Zhongqiu Liu, Zhongwen Yuan, Rutong Ren, Hua Zhou, Ying Xie, Liang Liu. Deciphering the pharmacological mechanism of Guan-Jie-Kang in treating rat adjuvant-induced arthritis using omics analysis[J]. Front. Med., 2019, 13(5): 564-574.
[8] Xin Wu, Xiaobao Sheng, Rong Sheng, Hongjuan Lu, Huji Xu. Genetic and clinical markers for predicting treatment responsiveness in rheumatoid arthritis[J]. Front. Med., 2019, 13(4): 411-419.
[9] Xiaoqing Li, Xinxin Li, Genbei Wang, Yan Xu, Yuanyuan Wang, Ruijia Hao, Xiaohui Ma. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice[J]. Front. Med., 2018, 12(6): 688-696.
[10] Zhilin Hu, Qiang Zou, Bing Su. Regulation of T cell immunity by cellular metabolism[J]. Front. Med., 2018, 12(4): 463-472.
[11] Jichun Yang, Kaiyue Jin, Jiajun Xiao, Jing Ma, Duan Ma. Endogenous tissue factor pathway inhibitor in vascular smooth muscle cells inhibits arterial thrombosis[J]. Front. Med., 2017, 11(3): 403-409.
[12] Li Ma, Bin Wang, Yuanxiong Long, Hanmin Li. Effect of traditional Chinese medicine combined with Western therapy on primary hepatic carcinoma: a systematic review with meta-analysis[J]. Front. Med., 2017, 11(2): 191-202.
[13] Jing Ma,Fei Liu,Xin Du,Duan Ma,Likuan Xiong. Changes in lncRNAs and related genes in β-thalassemia minor and β-thalassemia major[J]. Front. Med., 2017, 11(1): 74-86.
[14] Hongli Yin,Tianyi Liu,Ying Zhang,Baofeng Yang. Caveolin proteins: a molecular insight into disease[J]. Front. Med., 2016, 10(4): 397-404.
[15] Yunfang Liu,Zhiping Yang,Jing Cheng,Daiming Fan. Barriers and countermeasures in developing traditional Chinese medicine in Europe[J]. Front. Med., 2016, 10(3): 360-376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed