Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2011, Vol. 5 Issue (3) : 294-301    https://doi.org/10.1007/s11684-011-0144-8
RESEARCH ARTICLE
c-Fos expression in rat brainstem following intake of sucrose or saccharin
Ke Chen1, Jianqun Yan1,2(), Jinrong Li1, Bo Lv1, Xiaolin Zhao1
1. Department of Physiology and Pathophysiology, School of Medicine, Xi’an Jiaotong University, Xi’an 710061, China; 2. Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Medicine, Xi’an Jiaotong University, Xi’an 710061, China
 Download: PDF(527 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To examine whether the activation of brainstem neurons during intake of a sweet tastant is due to orosensory signals or post-ingestive factors, we compared the distribution of c-Fos-like immunoreactivity (c-FLI) in the nucleus of the solitary tract (NST) and parabrachial nucleus (PBN) of brainstem following ingestion of 0.25 M sucrose or 0.005 M saccharin solutions. Immunopositive neurons were localized mainly in the middle zone of the PBN and four rostral-caudal subregions of the NST. Intake of sucrose increased the number of FLI neurons in almost every subnucleus of the PBN (F(2,13) = 7.610, P = 0.023), in addition to the caudal NST at the level of the area postrema (F(2,13) = 10.777, P = 0.003) and the NST intermediate zone (F(2,13) = 7.193, P = 0.014). No significant increase in the number of c-Fos positive neurons was detected in response to saccharin ingestion, although there was a trend towards a modest increase in a few select NST and PBN nuclei. These results suggest that the PBN and NST may be involved in sweet taste perception and modulation of sweet tastant intake, but the significantly enhanced intensity of Fos expression induced by sucrose indicates that PBN/NST neuronal activity is driven by the integrated effects of sweet taste sensation and post-ingestive signals.

Keywords c-Fos      parabrachial      the nucleus of the solitary tract      sweet tastant      rat     
Corresponding Author(s): Yan Jianqun,Email:jqyan810@gmail.com   
Issue Date: 05 September 2011
 Cite this article:   
Ke Chen,Jianqun Yan,Jinrong Li, et al. c-Fos expression in rat brainstem following intake of sucrose or saccharin[J]. Front Med, 2011, 5(3): 294-301.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-011-0144-8
https://academic.hep.com.cn/fmd/EN/Y2011/V5/I3/294
Fig.1  The changes in weight, weight gain, food intake, and water intake after water restriction (on day 2). A. body weight; B. body weight gain; C. food intake; D. water intake. Values are presented as means±SEM. a, b and c indicate significant difference from baseline after water restriction in the control group (a), sucrose group (b), and saccharin group (c) ( = 5 per treatment group).
Fig.2  The number of FLI-positive neurons in the NST induced by sweetener intake. After sucrose solution intake, the number of FLI-positive neurons in the N2 and N3 regions increased significantly. Values are presented as means±SEM. **<0.01, the difference between the sucrose group and control group; <0.05, the difference between the saccharin group and the sucrose group. There were 5 rats in each treatment group.
Fig.3  The distribution of FLI-positive neurons in the NST-N3 region of rats induced by intake of sweet taste solutions. Sucrose solution elicited robust FLI in this area. A, B, and C indicate control group, sucrose group, and saccharin group, respectively. D is the schematic neuroanatomic diagram of the N3 region. NST, the nucleus of the solitary tract; sol, solitary tract; 4V, fourth ventricle ( = 5). Scale bar= 100 μm.
Fig.4  The number of FLI-positive neurons in subnuclei of the PBN induced by sweet tastant intake. Sucrose elicited marked c-FLI in the vl, dl, cl, and medial nucleus of the PBN. Values are presented as means±SEM of five rats per treatment group. *<0.05, **<0.01, compared with control rats; <0.05, <0.01, compared with sucrose group.
Fig.5  The distribution of FLI-positive neurons in the parabrachial nucleus induced by sucrose or saccharin intake. Sucrose solution induced vigorous c-FLI in this area, while intake of saccharin solution elicited negligible expression compared to the control group. (A–C). Micrographs are stained slices from a control rat (A), sucrose-fed rat (B), and saccharin-fed rat (C). SCP, superior cerebellar peduncle (brachium conjunctivum). Scale bar= 100 μm.
1 Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 1988; 240(4857): 1328-1331
doi: 3131879" target="_blank">10.1126/science. pmid:3131879 pmid:3131879
2 Harrer MI, Travers SP. Topographic organization of Fos-like immunoreactivity in the rostral nucleus of the solitary tract evoked by gustatory stimulation with sucrose and quinine. Brain Res 1996; 711(1-2): 125-137
doi: 10.1016/0006-8993(95)01410-1 pmid:8680855
3 King CT, Travers SP, Rowland NE, Garcea M, Spector AC. Glossopharyngeal nerve transection eliminates quinine-stimulated fos-like immunoreactivity in the nucleus of the solitary tract: implications for a functional topography of gustatory nerve input in rats. J Neurosci 1999; 19(8): 3107-3121
pmid:10191326
4 Travers JB, Urbanek K, Grill HJ. Fos-like immunoreactivity in the brain stem following oral quinine stimulation in decerebrate rats. Am J Physiol 1999; 277(2 Pt 2): R384-R394
pmid:10444544
5 Yamamoto T, Shimura T, Sako N, Sakai N, Tanimizu T, Wakisaka S. c-Fos expression in the parabrachial nucleus after ingestion of sodium chloride in the rat. Neuroreport 1993; 4(11): 1223-1226
doi: 10.1097/00001756-199309000-00003 pmid:8219018
6 Yamamoto T, Shimura T, Sakai N, Ozaki N. Representation of hedonics and quality of taste stimuli in the parabrachial nucleus of the rat. Physiol Behav 1994; 56(6): 1197-1202
doi: 10.1016/0031-9384(94)90366-2 pmid:7878091
7 Yamamoto T, Sako N, Sakai N, Iwafune A. Gustatory and visceral inputs to the amygdala of the rat: conditioned taste aversion and induction of c-fos-like immunoreactivity. Neurosci Lett 1997; 226(2): 127-130
doi: 10.1016/S0304-3940(97)00265-6 pmid:9159506
8 Yamamoto T, Sawa K. c-Fos-like immunoreactivity in the brainstem following gastric loads of various chemical solutions in rats. Brain Res 2000; 866(1-2): 135-143
doi: 10.1016/S0006-8993(00)02241-1 pmid:10825489
9 Kobashi M, Ichikawa H, Sugimoto T, Adachi A. Response of neurons in the solitary tract nucleus, area postrema and lateral parabrachial nucleus to gastric load of hypertonic saline. Neurosci Lett 1993; 158(1): 47-50
doi: 10.1016/0304-3940(93)90609-O pmid:8233072
10 ?gmo A, Marroquin E. Role of gustatory and postingestive actions of sweeteners in the generation of positive affect as evaluated by place preference conditioning. Appetite 1997; 29(3): 269-289
doi: 10.1006/appe.1997.0101 pmid:9468761
11 Kushner LR, Mook DG. Behavioral correlates of oral and postingestive satiety in the rat. Physiol Behav 1984; 33(5): 713-718
doi: 10.1016/0031-9384(84)90036-2 pmid:6522491
12 Yamamoto T, Sawa K. Comparison of c-fos-like immunoreactivity in the brainstem following intraoral and intragastric infusions of chemical solutions in rats. Brain Res 2000; 866(1-2): 144-151
doi: 10.1016/S0006-8993(00)02242-3 pmid:10825490
13 Fulwiler CE, Saper CB. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 1984;7(3):229-259
doi: 10.1016/0165-0173(84)90012-2 pmid:6478256
14 Travers SP , Hu H. Extranuclear projections of rNST neurons expressing gustatory-elicited Fos. J Comp Neurol 2000; 427(1): 124-138
doi: 10.1002/1096-9861(20001106)427:1&lt;124::AID-CNE8&gt;3.0.CO;2-2 pmid:11042595
15 Chen K, Yan J, Suo Y, Li J, Wang Q, Lv B.Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds. Brain Res 2010; 1325:53-62
doi: 10.1016/j.brainres.2010.02.026 pmid:20156422
16 Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA 2007; 104(38): 15075-15080
doi: 10.1073/pnas.0706678104 pmid:17724332
17 Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H, Nikolaev VO, Lohse MJ, Shigemura N, Ninomiya Y, Kojima I.Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE 2009 ; 4(4): e5106
doi: 10.1371/journal.pone.0005106 pmid: 19352508
18 Mungarndee SS, Lundy RF Jr, Norgren R. Expression of Fos during sham sucrose intake in rats with central gustatory lesions. Am J Physiol Regul Integr Comp Physiol 2008; 295(3): R751-R763
doi: 10.1152/ajpregu.90344.2008 pmid:18635449
19 Hamilton RB, Norgren R. Central projections of gustatory nerves in the rat. J Comp Neurol 1984; 222(4): 560-577
doi: 10.1002/cne.902220408 pmid:6199385
20 Halsell CB, Travers SP, Travers JB. Ascending and descending projections from the rostral nucleus of the solitary tract originate from separate neuronal populations. Neuroscience 1996; 72(1): 185-197
doi: 10.1016/0306-4522(95)00528-5 pmid:8730716
21 Travers JB. Efferent projections from the anterior nucleus of the solitary tract of the hamster. Brain Res 1988; 457(1): 1-11
doi: 10.1016/0006-8993(88)90051-0 pmid:3167557
22 Halsell CB, Travers SP. Anterior and posterior oral cavity responsive neurons are differentially distributed among parabrachial subnuclei in rat. J Neurophysiol 1997; 78(2): 920-938
pmid:9307125
23 Karimnamazi H, Travers SP, Travers JB. Oral and gastric input to the parabrachial nucleus of the rat. Brain Res 2002; 957(2): 193-206
doi: 10.1016/S0006-8993(02)03438-8 pmid:12445962
24 Yamamoto T. Brain mechanisms of sweetness and palatability of sugars. Nutr Rev 2003; 61(Supplement s5): S5-S9
doi: 10.1301/nr.2003.may.S5-S9 pmid:12828186
25 Streefland C, Farkas E, Maes FW, Bohus B. c-fos expression in the brainstem after voluntary ingestion of sucrose in the rat. Neurobiology (Bp) 1996; 4(1-2): 85-102
pmid:9116697
26 Travers SP, Norgren R. Organization of orosensory responses in the nucleus of the solitary tract of rat. J Neurophysiol 1995; 73(6): 2144-2162
pmid:7666129
27 Whitehead MC, Frank ME. Anatomy of the gustatory system in the hamster: central projections of the chorda tympani and the lingual nerve. J Comp Neurol 1983; 220(4): 378-395
doi: 10.1002/cne.902200403 pmid:6643734
28 Schwarz J, Burguet J, Rampin O, Fromentin G, Andrey P, Tomé D, Maurin Y, Darcel N. Three-dimensional macronutrient-associated Fos expression patterns in the mouse brainstem. PLoS ONE 2010; 5(2): e8974
doi: 10.1371/journal.pone.0008974 pmid:20126542
29 Norgren R, Pfaffmann C. The pontine taste area in the rat. Brain Res 1975; 91(1): 99-117
doi: 10.1016/0006-8993(75)90469-2 pmid:1131704
30 Tokita K, Shimura T, Nakamura S, Inoue T, Yamamoto T. Involvement of forebrain in parabrachial neuronal activation induced by aversively conditioned taste stimuli in the rat. Brain Res 2007; 1141:188-196
doi: 10.1016/j.brainres.2007.01.023 pmid:17276421
31 Geran LC, Travers SP. Bitter-responsive gustatory neurons in the rat parabrachial nucleus. J Neurophysiol 2009; 101(3): 1598-1612
doi: 10.1152/jn.91168.2008 pmid:19129294
32 Yamamoto T. Neural substrates for the processing of cognitive and affective aspects of taste in the brain. Arch Histol Cytol 2006; 69(4): 243-255
doi: 10.1679/aohc.69.243 pmid:17287579
33 Norgren R, Smith GP. Central distribution of subdiaphragmatic vagal branches in the rat. J Comp Neurol 1988; 273(2): 207-223
doi: 10.1002/cne.902730206 pmid:3417902
34 Sakai N, Yamamoto T. Conditioned taste aversion and c-fos expression in the rat brainstem after administration of various USs. Neuroreport 1997; 8(9-10): 2215-2220
doi: 10.1097/00001756-199707070-00025 pmid:9243614
[1] Ying Huo, Peng Yuan, Qingyuan Qin, Zhiqiang Yan, Liying Yan, Ping Liu, Rong Li, Jie Yan, Jie Qiao. Effects of vitrification and cryostorage duration on single-cell RNA-Seq profiling of vitrified-thawed human metaphase II oocytes[J]. Front. Med., 2021, 15(1): 144-154.
[2] Wenwen Shang, Lei Wu, Rui Xu, Xian Chen, Shasha Yao, Peijun Huang, Fang Wang. Clinical laboratory features of Meigs’ syndrome: a retrospective study from 2009 to 2018[J]. Front. Med., 2021, 15(1): 116-124.
[3] Jing Ma, Shiyu Chen, Lili Hao, Wei Sheng, Weicheng Chen, Xiaojing Ma, Bowen Zhang, Duan Ma, Guoying Huang. Long non-coding RNA SAP30-2:1 is downregulated in congenital heart disease and regulates cell proliferation by targeting HAND2[J]. Front. Med., 2021, 15(1): 91-100.
[4] Xiaofang Cai, Hanlan Jiang, Simin Zhang, Shengying Xia, Wenhui Du, Yaoling Ma, Tao Yu, Wenbin Li. Clinical manifestations and pathogen characteristics in children admitted for suspected COVID-19[J]. Front. Med., 2020, 14(6): 776-785.
[5] Lingling Tang, Yingan Jiang, Mengfei Zhu, Lijun Chen, Xiaoyang Zhou, Chenliang Zhou, Peng Ye, Xiaobei Chen, Baohong Wang, Zhenyu Xu, Qiang Zhang, Xiaowei Xu, Hainv Gao, Xiaojun Wu, Dong Li, Wanli Jiang, Jingjing Qu, Charlie Xiang, Lanjuan Li. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19[J]. Front. Med., 2020, 14(5): 664-673.
[6] Huiwen Ren, Can Wu, Ying Shao, Shuang Liu, Yang Zhou, Qiuyue Wang. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study[J]. Front. Med., 2020, 14(5): 642-650.
[7] Allison J. Navarrete-Welton, Daniel A. Hashimoto. Current applications of artificial intelligence for intraoperative decision support in surgery[J]. Front. Med., 2020, 14(4): 369-381.
[8] Xuran Chu, Chengshui Chen, Chaolei Chen, Jin-San Zhang, Saverio Bellusci, Xiaokun Li. Evidence for lung repair and regeneration in humans: key stem cells and therapeutic functions of fibroblast growth factors[J]. Front. Med., 2020, 14(3): 262-272.
[9] Guangbiao Zhou, Saijuan Chen, Zhu Chen. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies[J]. Front. Med., 2020, 14(2): 117-125.
[10] Wei Liu, Jing Wang, Wenbin Li, Zhaoxian Zhou, Siying Liu, Zhihui Rong. Clinical characteristics of 19 neonates born to mothers with COVID-19[J]. Front. Med., 2020, 14(2): 193-198.
[11] Jie Pan, Zhengchao Shi, Dingsai Lin, Ningmin Yang, Fei Meng, Lang Lin, Zhencheng Jin, Qingjie Zhou, Jiansheng Wu, Jianzhong Zhang, Youming Li. Is tailored therapy based on antibiotic susceptibility effective ? A multicenter, open-label, randomized trial[J]. Front. Med., 2020, 14(1): 43-50.
[12] Yuan Gao, Zhilei Wang, Jinfa Tang, Xiaoyi Liu, Wei Shi, Nan Qin, Xiaoyan Wang, Yu Pang, Ruisheng Li, Yaming Zhang, Jiabo Wang, Ming Niu, Zhaofang Bai, Xiaohe Xiao. New incompatible pair of TCM: Epimedii Folium combined with Psoraleae Fructus induces idiosyncratic hepatotoxicity under immunological stress conditions[J]. Front. Med., 2020, 14(1): 68-80.
[13] Seo Yeon Baik, Hyunah Kim, So Jung Yang, Tong Min Kim, Seung-Hwan Lee, Jae Hyoung Cho, Hyunyong Lee, Hyeon Woo Yim, Kun-Ho Yoon, Hun-Sung Kim. Long-term effects of various types of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors on changes in glomerular filtration rate in Korea[J]. Front. Med., 2019, 13(6): 713-722.
[14] Jiajia Hu, Wenbin Shen, Qian Qu, Xiaochun Fei, Ying Miao, Xinyun Huang, Jiajun Liu, Yingli Wu, Biao Li. NES1/KLK10 and hNIS gene therapy enhanced iodine-131 internal radiation in PC3 proliferation inhibition[J]. Front. Med., 2019, 13(6): 646-657.
[15] Mara Simopoulou, Konstantinos Sfakianoudis, Petroula Tsioulou, Anna Rapani, Polina Giannelou, Nikolaos Kiriakopoulos, Agni Pantou, Nikolaos Vlahos, George Anifandis, Stamatis Bolaris, Konstantinos Pantos, Michael Koutsilieris. What will the future hold for artificial organs in the service of assisted reproduction: prospects and considerations[J]. Front. Med., 2019, 13(6): 627-638.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed