Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2011, Vol. 5 Issue (3) : 294-301     DOI: 10.1007/s11684-011-0144-8
c-Fos expression in rat brainstem following intake of sucrose or saccharin
Ke Chen1, Jianqun Yan1,2(), Jinrong Li1, Bo Lv1, Xiaolin Zhao1
1. Department of Physiology and Pathophysiology, School of Medicine, Xi’an Jiaotong University, Xi’an 710061, China; 2. Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, School of Medicine, Xi’an Jiaotong University, Xi’an 710061, China
Download: PDF(527 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

To examine whether the activation of brainstem neurons during intake of a sweet tastant is due to orosensory signals or post-ingestive factors, we compared the distribution of c-Fos-like immunoreactivity (c-FLI) in the nucleus of the solitary tract (NST) and parabrachial nucleus (PBN) of brainstem following ingestion of 0.25 M sucrose or 0.005 M saccharin solutions. Immunopositive neurons were localized mainly in the middle zone of the PBN and four rostral-caudal subregions of the NST. Intake of sucrose increased the number of FLI neurons in almost every subnucleus of the PBN (F(2,13) = 7.610, P = 0.023), in addition to the caudal NST at the level of the area postrema (F(2,13) = 10.777, P = 0.003) and the NST intermediate zone (F(2,13) = 7.193, P = 0.014). No significant increase in the number of c-Fos positive neurons was detected in response to saccharin ingestion, although there was a trend towards a modest increase in a few select NST and PBN nuclei. These results suggest that the PBN and NST may be involved in sweet taste perception and modulation of sweet tastant intake, but the significantly enhanced intensity of Fos expression induced by sucrose indicates that PBN/NST neuronal activity is driven by the integrated effects of sweet taste sensation and post-ingestive signals.

Keywords c-Fos      parabrachial      the nucleus of the solitary tract      sweet tastant      rat     
Corresponding Authors: Yan Jianqun,   
Issue Date: 05 September 2011
URL:     OR
Fig.1  The changes in weight, weight gain, food intake, and water intake after water restriction (on day 2). A. body weight; B. body weight gain; C. food intake; D. water intake. Values are presented as means±SEM. a, b and c indicate significant difference from baseline after water restriction in the control group (a), sucrose group (b), and saccharin group (c) ( = 5 per treatment group).
Fig.2  The number of FLI-positive neurons in the NST induced by sweetener intake. After sucrose solution intake, the number of FLI-positive neurons in the N2 and N3 regions increased significantly. Values are presented as means±SEM. **<0.01, the difference between the sucrose group and control group; <0.05, the difference between the saccharin group and the sucrose group. There were 5 rats in each treatment group.
Fig.3  The distribution of FLI-positive neurons in the NST-N3 region of rats induced by intake of sweet taste solutions. Sucrose solution elicited robust FLI in this area. A, B, and C indicate control group, sucrose group, and saccharin group, respectively. D is the schematic neuroanatomic diagram of the N3 region. NST, the nucleus of the solitary tract; sol, solitary tract; 4V, fourth ventricle ( = 5). Scale bar= 100 μm.
Fig.4  The number of FLI-positive neurons in subnuclei of the PBN induced by sweet tastant intake. Sucrose elicited marked c-FLI in the vl, dl, cl, and medial nucleus of the PBN. Values are presented as means±SEM of five rats per treatment group. *<0.05, **<0.01, compared with control rats; <0.05, <0.01, compared with sucrose group.
Fig.5  The distribution of FLI-positive neurons in the parabrachial nucleus induced by sucrose or saccharin intake. Sucrose solution induced vigorous c-FLI in this area, while intake of saccharin solution elicited negligible expression compared to the control group. (A–C). Micrographs are stained slices from a control rat (A), sucrose-fed rat (B), and saccharin-fed rat (C). SCP, superior cerebellar peduncle (brachium conjunctivum). Scale bar= 100 μm.
1 Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science 1988; 240(4857): 1328-1331
doi: 3131879" target="_blank">10.1126/science. pmid:3131879 pmid:3131879
2 Harrer MI, Travers SP. Topographic organization of Fos-like immunoreactivity in the rostral nucleus of the solitary tract evoked by gustatory stimulation with sucrose and quinine. Brain Res 1996; 711(1-2): 125-137
doi: 10.1016/0006-8993(95)01410-1 pmid:8680855
3 King CT, Travers SP, Rowland NE, Garcea M, Spector AC. Glossopharyngeal nerve transection eliminates quinine-stimulated fos-like immunoreactivity in the nucleus of the solitary tract: implications for a functional topography of gustatory nerve input in rats. J Neurosci 1999; 19(8): 3107-3121
4 Travers JB, Urbanek K, Grill HJ. Fos-like immunoreactivity in the brain stem following oral quinine stimulation in decerebrate rats. Am J Physiol 1999; 277(2 Pt 2): R384-R394
5 Yamamoto T, Shimura T, Sako N, Sakai N, Tanimizu T, Wakisaka S. c-Fos expression in the parabrachial nucleus after ingestion of sodium chloride in the rat. Neuroreport 1993; 4(11): 1223-1226
doi: 10.1097/00001756-199309000-00003 pmid:8219018
6 Yamamoto T, Shimura T, Sakai N, Ozaki N. Representation of hedonics and quality of taste stimuli in the parabrachial nucleus of the rat. Physiol Behav 1994; 56(6): 1197-1202
doi: 10.1016/0031-9384(94)90366-2 pmid:7878091
7 Yamamoto T, Sako N, Sakai N, Iwafune A. Gustatory and visceral inputs to the amygdala of the rat: conditioned taste aversion and induction of c-fos-like immunoreactivity. Neurosci Lett 1997; 226(2): 127-130
doi: 10.1016/S0304-3940(97)00265-6 pmid:9159506
8 Yamamoto T, Sawa K. c-Fos-like immunoreactivity in the brainstem following gastric loads of various chemical solutions in rats. Brain Res 2000; 866(1-2): 135-143
doi: 10.1016/S0006-8993(00)02241-1 pmid:10825489
9 Kobashi M, Ichikawa H, Sugimoto T, Adachi A. Response of neurons in the solitary tract nucleus, area postrema and lateral parabrachial nucleus to gastric load of hypertonic saline. Neurosci Lett 1993; 158(1): 47-50
doi: 10.1016/0304-3940(93)90609-O pmid:8233072
10 ?gmo A, Marroquin E. Role of gustatory and postingestive actions of sweeteners in the generation of positive affect as evaluated by place preference conditioning. Appetite 1997; 29(3): 269-289
doi: 10.1006/appe.1997.0101 pmid:9468761
11 Kushner LR, Mook DG. Behavioral correlates of oral and postingestive satiety in the rat. Physiol Behav 1984; 33(5): 713-718
doi: 10.1016/0031-9384(84)90036-2 pmid:6522491
12 Yamamoto T, Sawa K. Comparison of c-fos-like immunoreactivity in the brainstem following intraoral and intragastric infusions of chemical solutions in rats. Brain Res 2000; 866(1-2): 144-151
doi: 10.1016/S0006-8993(00)02242-3 pmid:10825490
13 Fulwiler CE, Saper CB. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 1984;7(3):229-259
doi: 10.1016/0165-0173(84)90012-2 pmid:6478256
14 Travers SP , Hu H. Extranuclear projections of rNST neurons expressing gustatory-elicited Fos. J Comp Neurol 2000; 427(1): 124-138
doi: 10.1002/1096-9861(20001106)427:1&lt;124::AID-CNE8&gt;3.0.CO;2-2 pmid:11042595
15 Chen K, Yan J, Suo Y, Li J, Wang Q, Lv B.Nutritional status alters saccharin intake and sweet receptor mRNA expression in rat taste buds. Brain Res 2010; 1325:53-62
doi: 10.1016/j.brainres.2010.02.026 pmid:20156422
16 Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA 2007; 104(38): 15075-15080
doi: 10.1073/pnas.0706678104 pmid:17724332
17 Nakagawa Y, Nagasawa M, Yamada S, Hara A, Mogami H, Nikolaev VO, Lohse MJ, Shigemura N, Ninomiya Y, Kojima I.Sweet taste receptor expressed in pancreatic beta-cells activates the calcium and cyclic AMP signaling systems and stimulates insulin secretion. PLoS ONE 2009 ; 4(4): e5106
doi: 10.1371/journal.pone.0005106 pmid: 19352508
18 Mungarndee SS, Lundy RF Jr, Norgren R. Expression of Fos during sham sucrose intake in rats with central gustatory lesions. Am J Physiol Regul Integr Comp Physiol 2008; 295(3): R751-R763
doi: 10.1152/ajpregu.90344.2008 pmid:18635449
19 Hamilton RB, Norgren R. Central projections of gustatory nerves in the rat. J Comp Neurol 1984; 222(4): 560-577
doi: 10.1002/cne.902220408 pmid:6199385
20 Halsell CB, Travers SP, Travers JB. Ascending and descending projections from the rostral nucleus of the solitary tract originate from separate neuronal populations. Neuroscience 1996; 72(1): 185-197
doi: 10.1016/0306-4522(95)00528-5 pmid:8730716
21 Travers JB. Efferent projections from the anterior nucleus of the solitary tract of the hamster. Brain Res 1988; 457(1): 1-11
doi: 10.1016/0006-8993(88)90051-0 pmid:3167557
22 Halsell CB, Travers SP. Anterior and posterior oral cavity responsive neurons are differentially distributed among parabrachial subnuclei in rat. J Neurophysiol 1997; 78(2): 920-938
23 Karimnamazi H, Travers SP, Travers JB. Oral and gastric input to the parabrachial nucleus of the rat. Brain Res 2002; 957(2): 193-206
doi: 10.1016/S0006-8993(02)03438-8 pmid:12445962
24 Yamamoto T. Brain mechanisms of sweetness and palatability of sugars. Nutr Rev 2003; 61(Supplement s5): S5-S9
doi: 10.1301/nr.2003.may.S5-S9 pmid:12828186
25 Streefland C, Farkas E, Maes FW, Bohus B. c-fos expression in the brainstem after voluntary ingestion of sucrose in the rat. Neurobiology (Bp) 1996; 4(1-2): 85-102
26 Travers SP, Norgren R. Organization of orosensory responses in the nucleus of the solitary tract of rat. J Neurophysiol 1995; 73(6): 2144-2162
27 Whitehead MC, Frank ME. Anatomy of the gustatory system in the hamster: central projections of the chorda tympani and the lingual nerve. J Comp Neurol 1983; 220(4): 378-395
doi: 10.1002/cne.902200403 pmid:6643734
28 Schwarz J, Burguet J, Rampin O, Fromentin G, Andrey P, Tomé D, Maurin Y, Darcel N. Three-dimensional macronutrient-associated Fos expression patterns in the mouse brainstem. PLoS ONE 2010; 5(2): e8974
doi: 10.1371/journal.pone.0008974 pmid:20126542
29 Norgren R, Pfaffmann C. The pontine taste area in the rat. Brain Res 1975; 91(1): 99-117
doi: 10.1016/0006-8993(75)90469-2 pmid:1131704
30 Tokita K, Shimura T, Nakamura S, Inoue T, Yamamoto T. Involvement of forebrain in parabrachial neuronal activation induced by aversively conditioned taste stimuli in the rat. Brain Res 2007; 1141:188-196
doi: 10.1016/j.brainres.2007.01.023 pmid:17276421
31 Geran LC, Travers SP. Bitter-responsive gustatory neurons in the rat parabrachial nucleus. J Neurophysiol 2009; 101(3): 1598-1612
doi: 10.1152/jn.91168.2008 pmid:19129294
32 Yamamoto T. Neural substrates for the processing of cognitive and affective aspects of taste in the brain. Arch Histol Cytol 2006; 69(4): 243-255
doi: 10.1679/aohc.69.243 pmid:17287579
33 Norgren R, Smith GP. Central distribution of subdiaphragmatic vagal branches in the rat. J Comp Neurol 1988; 273(2): 207-223
doi: 10.1002/cne.902730206 pmid:3417902
34 Sakai N, Yamamoto T. Conditioned taste aversion and c-fos expression in the rat brainstem after administration of various USs. Neuroreport 1997; 8(9-10): 2215-2220
doi: 10.1097/00001756-199707070-00025 pmid:9243614
[1] Xiaoyu Wang,Yuxuan Gao,Haigang Shi,Na Liu,Wei Zhang,Hongbo Li. Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells[J]. Front. Med., 2016, 10(3): 286-296.
[2] Yujiao Liu,Chao Liu,Wen Dong,Wei Li. Physiological functions and clinical implications of the N-end rule pathway[J]. Front. Med., 2016, 10(3): 258-270.
[3] Muhammad Waqas,Shasha Zhang,Zuhong He,Mingliang Tang,Renjie Chai. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea[J]. Front. Med., 2016, 10(3): 237-249.
[4] Aining Xu,Lin Cheng. Chemical transdifferentiation: closer to regenerative medicine[J]. Front. Med., 2016, 10(2): 152-165.
[5] Jaffar A. Al-Tawfiq,Ali S. Omrani,Ziad A. Memish. Middle East respiratory syndrome coronavirus: current situation and travel-associated concerns[J]. Front. Med., 2016, 10(2): 111-119.
[6] Wenyan Li,Dan You,Yan Chen,Renjie Chai,Huawei Li. Regeneration of hair cells in the mammalian vestibular system[J]. Front. Med., 2016, 10(2): 143-151.
[7] Shuyang Sun,Zhiyuan Zhang. Patient-derived xenograft platform of OSCC: a renewable human bio-bank for preclinical cancer research and a new co-clinical model for treatment optimization[J]. Front. Med., 2016, 10(1): 104-110.
[8] Lan Wang,Jueheng Wu,Jie Yuan,Xun Zhu,Hongmei Wu,Mengfeng Li. Midline2 is overexpressed and a prognostic indicator in human breast cancer and promotes breast cancer cell proliferation in vitro and in vivo[J]. Front. Med., 2016, 10(1): 41-51.
[9] Wen Xue,Yan Sheng,Xiangqin Weng,Yongmei Zhu,Yan Zhao,Pengpeng Xu,Xiaochun Fei,Xiaoyan Chen,Li Wang,Weili Zhao. Clinical characteristics and prognostic factors of patients with mature T-cell lymphoid malignancies: a single-institution study of 225 cases[J]. Front. Med., 2015, 9(4): 468-477.
[10] Feng Gu,Yongjie Ma,Jiao Zhang,Fengxia Qin,Li Fu. Function of Slit/Robo signaling in breast cancer[J]. Front. Med., 2015, 9(4): 431-436.
[11] Xueshan Bu,Lei Yang,Yunxia Zuo. Efficacy and safety of perioperative parecoxib for acute postoperative pain treatment in children: a meta-analysis[J]. Front. Med., 2015, 9(4): 496-507.
[12] Yinyin Xie,Yuanliang Zhang,Lu Jiang,Mengmeng Zhang,Zhiwei Chen,Dan Liu,Qiuhua Huang. Disabled homolog 2 is required for migration and invasion of prostate cancer cells[J]. Front. Med., 2015, 9(3): 312-321.
[13] Zhonggao Wang,Zhiwei Hu,Jimin Wu,Feng Ji,Hongtao Wang,Yungang Lai,Xiang Gao,Yachan Ning,Chengchao Zhang,Zhitong Li,Weitao Liang,Jianjun Liu. Insult of gastroesophageal reflux on airway: clinical significance of pharyngeal nozzle[J]. Front. Med., 2015, 9(1): 117-122.
[14] Qihui Luo,Zhengli Chen,Anchun Cheng,Mingshu Wang,Jing Fang,Xi Peng,Li Tang. Reproductive toxicity study with a novel deoxyguanosine analogue (Metacavir) in pregnant SD rats[J]. Front. Med., 2015, 9(1): 82-89.
[15] Runlin Shi,Haibing Xiao,Tao Yang,Lei Chang,Yuanfeng Tian,Bolin Wu,Hua Xu. Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism[J]. Front. Med., 2014, 8(4): 456-463.
Full text