Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    0, Vol. Issue () : 254-270    https://doi.org/10.1007/s11684-011-0153-7
REVIEW
Multislice computed tomography angiography in the diagnosis of cardiovascular disease: 3D visualizations
Zhonghua Sun()
Discipline of Medical Imaging, Department of Imaging and Applied Physics, Curtin University, Perth, Western Australia, Australia
 Download: PDF(1523 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Multislice computed tomography (CT) has been widely used in clinical practice for the diagnosis of cardiovascular disease due to its reduced invasiveness and high spatial and temporal resolution. As a reliable alternative to conventional angiography, multislice CT angiography has been recognized as the method of choice for detecting and diagnosing head and neck vascular disease, abdominal aortic aneurysm, aortic dissection, and pulmonary embolism. In patients with suspected coronary artery disease, although invasive coronary angiography still remains as the gold standard technique, multislice CT angiography demonstrates high diagnostic accuracy; in selected patients, it is considered as the first-line technique. The imaging diagnosis of cardiovascular disease is based on a combination of two-dimensional (2D) and three-dimensional (3D) visualization tools to enhance the diagnostic value. This is facilitated by reconstructed visualizations which provide additional information about the extent of the disease, an accurate assessment of the spatial relationship between normal structures and pathological changes, and pre-operative planning and post-procedure follow-up. The aim of the present article is to present an overview of the diagnostic performance of various 2D and 3D CT visualizations in cardiovascular disease, including multiplanar reformation, maximum intensity projection, volume rendering, and virtual intravascular endoscopy. The recognition of the potential value of these visualizations will assist clinicians in efficiently using the multislice CT imaging modality for the diagnostic management of patients with cardiovascular disease.

Keywords cardiovascular disease      multislice computed tomography      three-dimensional reconstruction      diagnosis      visualization     
Corresponding Author(s): Sun Zhonghua,Email:z.sun@curtin.edu.au   
Issue Date: 05 September 2011
 Cite this article:   
Zhonghua Sun. Multislice computed tomography angiography in the diagnosis of cardiovascular disease: 3D visualizations[J]. Front Med, 0, (): 254-270.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-011-0153-7
https://academic.hep.com.cn/fmd/EN/Y0/V/I/254
Fig.1  2D MIP (A) and 3D VR (B) images demonstrate normal carotid arteries arising from the aortic arch with visualization of cerebral branches.
Fig.2  Sagittal reformatted CT image shows significant stenosis at the right coronary artery (A). Virtual intravascular endoscopy demonstrates narrowed arterial lumen due to the presence of plaques (arrows in B).
Fig.3  A carotid stent is implanted to treat right carotid stenosis (A). Virtual intravascular endoscopy shows the intraluminal views of carotid stent with patent lumen (arrows in B).
Fig.4  3D CT angiography demonstrates the circle of Willis with bony structures (A). Subtracted CT angiography with some bone structures removed clearly shows the artery branches in the circle of Willis (B).
Fig.5  A non-calcified coronary plaque (arrow in A) is demonstrated at the proximal segment of right coronary artery on a curved planar reformatted (CVR) image in a patient with suspected CAD. The plaque results in more than 50% coronary lumen stenosis. CVR shows mixed coronary plaques (arrows in B) at the proximal segment of left anterior descending in another patient with atypical chest pain, diabetes, and hypertension.
Fig.6  CVR shows a normal right coronary artery without any sign of plaques. PLB-posterior lateral branch.
Fig.7  Calcified coronary plaques are shown (long arrow) at the proximal segment of the left anterior descending, as well as the distal segment of left circumflex (short arrow) branches on a coronal MIP image in a patient with a history of chest pain and hypertension.
Fig.8  3D VR demonstrates the left coronary artery with excellent visualization of the normal left coronary artery and its side branches.
Fig.9  A noncalcified plaque is noticed in the proximal segment of the right coronary artery (arrow in A), and VIE shows the smooth protruding appearance arising from the inferior wall (arrows in B). Extensive calcified plaques are found in the left coronary artery with a total occlusion of midleft circumflex observed on CVR image (C) in a patient with atypical chest pain. The corresponding VIE image (D) shows significant stenosis with irregular wall change in the left coronary wall.
Fig.10  3D CT VIE shows the aortic valve with normal appearance (A). Multiplanar reformatted views indicate the viewing position placed at the outlet of the left ventricle (B). The red square refers to the virtual camera, whereas the blue square points to the virtual eye location.
Fig.11  An axial CT image shows a large aortic aneurysm with extensive artery wall calcification and large thrombus formation.
Fig.12  CVR views (A) allow for the accurate measurement of aneurysm diameter and proximal and distal aneurysm neck lengths. The 3D surface rendered image (B) shows an infrarenal aortic aneurysm that involves bilateral common iliac arteries. Coronal MIP (C) image demonstrates extensive calcification in the aneurysm wall and in the origins of the renal arteries.
Fig.13  Diagrams for the pre-operative planning of the endovascular repair of AAA. (A) A planning diagram is developed based on 3D CT reconstructions in a patient diagnosed with AAA. (B) The open view of the upper portion of the stent graft shows double width fenestration (long arrows), large fenestration (short arrow), and small fenestrations (arrowheads), which are implanted in the celiac axis, superior mesenteric artery, and renal arteries, respectively.
Fig.14  Coronal MIP (A) shows that a suprarenal stent graft is placed above the renal arteries with successful exclusion of the aneurysm. 3D VR (B) shows the relationship between the aortic stent graft and the abdominal aorta and its branches by coding different colors, such as red, yellow, and white, to the stent wires, blood vessels, and bones, respectively.
Fig.15  VIE shows that the left renal (A) and superior mesenteric artery (B) ostia are crossed by single and multiple stent wires, respectively, in a patient treated with suprarenal stent-graft. Short arrows indicate the renal and superior mesenteric ostia, whereas long arrows refer to suprarenal stent wires.
Fig.16  Coronary MIP (A) reveals the fenestrated renal stents implanted in a patient treated with fenestrated stent-graft. Corresponding VIE images show the fenestrated renal stents (B and C) with normal circular appearance. An extended intra-aortic protrusion of the left renal stent is noticed (B).
Fig.17  VIE shows the flaring effect at the inferior component of the right renal stent (arrows in A) due to balloon inflation during fenestrated stent grafting procedure and deformed right renal stent (arrows in B). Arrows indicate the intraluminal appearances of the fenestrated renal stents.
Fig.18  Sagittal reformatted images show Stanford B dissection in the descending aorta with intimal tear arising just posterior to the left subclavian artery (black arrows). The true lumen (white arrows) is much smaller than the false lumen.
Fig.19  Stanford type A dissection is limited to the ascending aorta as shown on a 2D axial image (arrow in A). Both true and false lumens are clearly demonstrated on VIE visualization, and these two lumens are separated by an intimal flap (B). The three main artery branches are perfused by the true lumen as shown on VIE view. LSA-left subclavian artery, LCA-left common carotid artery.
Fig.20  2D axial images demonstrate that multiple pulmonary emboli are present in the right main pulmonary trunk and right upper and lower lobar branches (arrows in top row images). Coronal multiplanar reformatted images provide a clear visualization of these emboli in the right pulmonary arterial branches (arrows in the bottom row images).
Fig.21  VIE shows PE involving bilateral pulmonary artery branches with a large thrombus present in the left main pulmonary artery extending to the right side. PRA-right pulmonary artery, LPA-left pulmonary artery.
Fig.22  VIE views of the left lower lobar embolism from the proximal to distal segments of the lobar artery (A, B). The accurate position of the thrombus is confirmed with multiplanar views (C).
1 Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 2010; 121(7): 948-954
doi: 10.1161/CIRCULATIONAHA.109.192666 pmid:20177011
2 Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol 2010; 35(2): 72-115
doi: 10.1016/j.cpcardiol.2009.10.002 pmid:20109979
3 Liu L. Cardiovascular diseases in China. Biochem Cell Biol 2007; 85(2): 157-163
doi: 10.1139/O07-004 pmid:17534394
4 Boerma T, Shibuya K. World Health Statistics. 2007. http://www.who.int/whostat2007/en/index.html(accessed on 22 July 2011)
5 Adams MR, Celermajer DS. Detection of presymptomatic atherosclerosis: a current perspective. Clin Sci (Lond) 1999; 97(5): 615-624
doi: 10.1042/CS19990142 pmid:10545314
6 Dormandy J, Heeck L, Vig S. The natural history of claudication: risk to life and limb. Semin Vasc Surg 1999; 12(2): 123-137
pmid:10777239
7 Goyen M, Herborn CU, Kr?ger K, Lauenstein TC, Debatin JF, Ruehm SG. Detection of atherosclerosis: systemic imaging for systemic disease with whole-body three-dimensional MR angiography—initial experience. Radiology 2003; 227(1): 277-282
doi: 10.1148/radiol.2271020488 pmid:12601197
8 Noto TJ Jr, Johnson LW, Krone R, Weaver WF, Clark DA, Kramer JR Jr, Vetrovec GW. Cardiac catheterization 1990: a report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I). Cathet Cardiovasc Diagn 1991; 24(2): 75-83
doi: 10.1002/ccd.1810240202 pmid:1742788
9 Sun Z, Ng KH, Brennan P. Medical imaging of the heart and cardiovascular system. In: Acharya UR, Molinari F, Tamura T, Naidu DS, Suri JS. Distribution diagnosis and home healthcare (D2H2, Vol. 3). Stevenson Ranch , California : American Scientific Publishers, 2011 (in press)
10 McCollough CH, Zink FE. Performance evaluation of a multi-slice CT system. Med Phys 1999; 26(11): 2223-2230
doi: 10.1118/1.598777 pmid:10587202
11 Nieman K, Oudkerk M, Rensing BJ, van Ooijen P, Munne A, van Geuns RJ, de Feyter PJ. Coronary angiography with multi-slice computed tomography. Lancet 2001; 357(9256): 599-603
doi: 10.1016/S0140-6736(00)04058-7 pmid:11558487
12 Sun Z, Cao Y, Li H. Multislice computed tomography angiography in the diagnosis of coronary artery disease. J Geriatric Cardiol 2011; 8(2): 1-10
13 Sun Z, Choo GH, Ng KH. Coronary CT angiography: current status and continuing challenges. Br J Radiol 2011 Mar 8. [Epub ahead of print]
14 Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Süss C, Grasruck M, Stierstorfer K, Krauss B, Raupach R, Primak AN, Küttner A, Achenbach S, Becker C, Kopp A, Ohnesorge BM. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006; 16(2): 256-268
doi: 10.1007/s00330-005-2919-2 pmid:16341833
15 Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D, Ersoy H, Mather RT, Judy PF, Cai T, Coyner K, Schultz K, Whitmore AG, Di Carli MF. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 2008; 24(5): 535-546
doi: 10.1007/s10554-008-9308-2 pmid:18368512
16 Hollingworth W, Nathens AB, Kanne JP, Crandall ML, Crummy TA, Hallam DK, Wang MC, Jarvik JG. The diagnostic accuracy of computed tomography angiography for traumatic or atherosclerotic lesions of the carotid and vertebral arteries: a systematic review. Eur J Radiol 2003; 48(1): 88-102
doi: 10.1016/S0720-048X(03)00200-6 pmid:14511863
17 Josephson SA, Bryant SO, Mak HK, Johnston SC, Dillon WP, Smith WS. Evaluation of carotid stenosis using CT angiography in the initial evaluation of stroke and TIA. Neurology 2004; 63(3): 457-460
pmid:15304575
18 Sun Z. Helical CT angiography of abdominal aortic aneurysms treated with suprarenal stent grafting. Cardiovasc Intervent Radiol 2003; 26(3): 290-295
doi: 10.1007/s00270-003-0034-9 pmid:14562981
19 Rydberg J, Kopecky KK, Lalka SG, Johnson MS, Dalsing MC, Persohn SA. Stent grafting of abdominal aortic aneurysms: pre- and postoperative evaluation with multislice helical CT. J Comput Assist Tomogr 2001; 25(4): 580-586
doi: 10.1097/00004728-200107000-00013 pmid:11473190
20 Sun Z, Mwipatayi BP, Allen YB, Hartley DE, Lawrence-Brown MMD. Multislice CT angiography of fenestrated endovascular stent grafting for treating abdominal aortic aneurysms: a pictorial review of the 2D/3D visualizations. Korean J Radiol 2009; 10(3): 285-293
doi: 10.3348/kjr.2009.10.3.285 pmid:19412517
21 Sun Z, Cao Y. Multislice CT virtual intravascular endoscopy of aortic dissection: a pictorial essay. World J Radiol 2010; 2(11): 440-448
doi: 10.4329/wjr.v2.i11.440 pmid:21179312
22 Casta?er E, Andreu M, Gallardo X, Mata JM, Cabezuelo MA, Pallardó Y. CT in nontraumatic acute thoracic aortic disease: typical and atypical features and complications. Radiographics 2003; 23: S93-S110
doi: 10.1148/rg.23si035507 pmid:14557505
23 Sebastià C, Pallisa E, Quiroga S, Alvarez-Castells A, Dominguez R, Evangelista A. Aortic dissection: diagnosis and follow-up with helical CT. Radiographics 1999; 19(1): 45-60, quiz 149-150
pmid:9925391
24 Schoepf UJ, Goldhaber SZ, Costello P. Spiral computed tomography for acute pulmonary embolism. Circulation 2004; 109(18): 2160-2167
doi: 10.1161/01.CIR.0000128813.04325.08 pmid:15136509
25 Perrier A, Roy PM, Sanchez O, Le Gal G, Meyer G, Gourdier AL, Furber A, Revel MP, Howarth N, Davido A, Bounameaux H. Multidetector-row computed tomography in suspected pulmonary embolism. N Engl J Med 2005; 352(17): 1760-1768
doi: 10.1056/NEJMoa042905 pmid:15858185
26 Sun Z, Dosari SA, Ng C, al-Muntashari A, Almaliky S. Multislice CT virtual intravascular endoscopy for assessing pulmonary embolisms: a pictorial review. Korean J Radiol 2010; 11(2): 222-230
doi: 10.3348/kjr.2010.11.2.222 pmid:20191070
27 Sun Z, Jiang W. Diagnostic value of multislice CT angiography in coronary artery disease: a meta-analysis. Eur J Radiol 2006; 60: 279-286
doi: 10.1016/j.ejrad.2006.06.009 pmid:16887313
28 Sun Z, Lin CH, Davidson R, Dong C, Liao Y. Diagnostic value of 64-slice CT angiography in coronary artery disease: a systematic review. Eur J Radiol 2008; 67(1): 78-84
doi: 10.1016/j.ejrad.2007.07.014 pmid:17766073
29 Sun Z, Ng KH. Multislice CT angiography in cardiac imaging. Part II: clinical applications in coronary artery disease. Singapore Med J 2010; 51(4): 282-289
pmid:20505905
30 Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 1990; 176(1): 181-183
pmid:2353088
31 Kohl G. The evolution and state-of-the-art principles of multislice computed tomography. Proc Am Thorac Soc 2005; 2(6): 470-476, 499-500
doi: 10.1513/pats.200508-086DS pmid:16352750
32 Leber AW, Johnson T, Becker A, von Ziegler F, Tittus J, Nikolaou K, Reiser M, Steinbeck G, Becker CR, Knez A. Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J 2007; 28(19): 2354-2360
doi: 10.1093/eurheartj/ehm294 pmid:17644815
33 Brodoefel H, Burgstahler C, Tsiflikas I, Reimann A, Schroeder S, Claussen CD, Heuschmid M, Kopp AF. Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology 2008; 247(2): 346-355
doi: 10.1148/radiol.2472070906 pmid:18372455
34 Johnson TR, Nikolaou K, Busch S, Leber AW, Becker A, Wintersperger BJ, Rist C, Knez A, Reiser MF, Becker CR. Diagnostic accuracy of dual-source computed tomography in the diagnosis of coronary artery disease. Invest Radiol 2007; 42(10): 684-691
doi: 10.1097/RLI.0b013e31806907d0 pmid:17984765
35 Schwarz F, Ruzsics B, Schoepf UJ, Bastarrika G, Chiaramida SA, Abro JA, Brothers RL, Vogt S, Schmidt B, Costello P, Zwerner PL. Dual-energy CT of the heart—principles and protocols. Eur J Radiol 2008; 68(3): 423-433
doi: 10.1016/j.ejrad.2008.09.010 pmid:19008064
36 Korn A, Bender B, Thomas C, Danz S, Fenchel M, N?gele T, Heuschmid M, Ernemann U, Hauser TK. Dual energy CTA of the carotid bifurcation: advantage of plaque subtraction for assessment of grade of the stenosis and morphology. Eur J Radiol 2010 Sep 10. [Epub ahead of print]
doi: 10.1016/j.ejrad.2010.08.028 pmid:20833492
37 Thomas C, Korn A, Krauss B, Ketelsen D, Tsiflikas I, Reimann A, Brodoefel H, Claussen CD, Kopp AF, Ernemann U, Heuschmid M. Automatic bone and plaque removal using dual energy CT for head and neck angiography: feasibility and initial performance evaluation. Eur J Radiol 2010; 76(1): 61-67
doi: 10.1016/j.ejrad.2009.05.004 pmid:19520534
38 North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 1991; 325(7): 445-453
doi: 10.1056/NEJM199108153250701 pmid:1852179
39 European Carotid Surgery Trialists’ Collaborative Group. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998; 351(9113): 1379-1387
doi: 10.1016/S0140-6736(97)09292-1 pmid:9593407
40 Executive Committee for the Asymptomatic Carotid Atherosclerosis Study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA 1995; 273(18): 1421-1428
doi: 10.1001/jama.273.18.1421 pmid:7723155
41 Al Shuhaimi A, Ababtain K, Sun Z. Diagnostic value of non-invasive imaging techniques in the detection of carotid artery stenosis: a systematic review. Radiographer 2009; 56: 14-18
42 Chen CJ, Lee TH, Hsu HL, Tseng YC, Lin SK, Wang LJ, Wong YC. Multi-slice CT angiography in diagnosing total versus near occlusions of the internal carotid artery: comparison with catheter angiography. Stroke 2004; 35(1): 83-85
doi: 10.1161/01.STR.0000106139.38566.B2 pmid:14684778
43 Agid R, Lee SK, Willinsky RA, Farb RI, terBrugge KG. Acute subarachnoid hemorrhage: using 64-slice multidetector CT angiography to “triage” patients’ treatment. Neuroradiology 2006; 48(11): 787-794
doi: 10.1007/s00234-006-0129-5 pmid:17009025
44 Pozzi-Mucelli F, Bruni S, Doddi M, Calgaro A, Braini M, Cova M. Detection of intracranial aneurysms with 64 channel multidetector row computed tomography: comparison with digital subtraction angiography. Eur J Radiol 2007; 64(1): 15-26
doi: 10.1016/j.ejrad.2007.02.018 pmid:17412544
45 McKinney AM, Palmer CS, Truwit CL, Karagulle A, Teksam M. Detection of aneurysms by 64-section multidetector CT angiography in patients acutely suspected of having an intracranial aneurysm and comparison with digital subtraction and 3D rotational angiography. Am J Neuroradiol 2008; 29(3): 594-602
doi: 10.3174/ajnr.A0848 pmid:18065510
46 Luo Z, Wang D, Sun X, Zhang T, Liu F, Dong D, Chan NK, Shen B. Comparison of the accuracy of subtraction CT angiography performed on 320-detector row volume CT with conventional CT angiography for diagnosis of intracranial aneurysms. Eur J Radiol 2011 May 30. [Epub ahead of print]
doi: 10.1016/j.ejrad.2011.05.003 pmid:21632193
47 Tomandl BF, Hammen T, Klotz E, Ditt H, Stemper B, Lell M. Bone-subtraction CT angiography for the evaluation of intracranial aneurysms. Am J Neuroradiol 2006; 27(1): 55-59
pmid:16418356
48 Sakamoto S, Kiura Y, Shibukawa M, Ohba S, Arita K, Kurisu K. Subtracted 3D CT angiography for evaluation of internal carotid artery aneurysms: comparison with conventional digital subtraction angiography. Am J Neuroradiol 2006; 27(6): 1332-1337
pmid:16775292
49 Duan SY, Lv SM, Ye F, Lin QC. Imaging anatomy and variation of vertebral artery and bone structure at craniocervical junction. Eur Spine J 2009; 18(8): 1102-1108
doi: 10.1007/s00586-009-0925-9 pmid:19288143
50 Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Hoe J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008; 359(22): 2324-2336
doi: 10.1056/NEJMoa0806576 pmid:19038879
51 Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, Scherer M, Bellinger R, Martin A, Benton R, Delago A, Min JK. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 2008; 52(21): 1724-1732
doi: 10.1016/j.jacc.2008.07.031 pmid:19007693
52 Meijboom WB, Meijs MFL, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, Nieman K, van Werkhoven JM, Pundziute G, Weustink AC, de Vos AM, Pugliese F, Rensing B, Jukema JW, Bax JJ, Prokop M, Doevendans PA, Hunink MG, Krestin GP, de Feyter PJ. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 2008; 52(25): 2135-2144
doi: 10.1016/j.jacc.2008.08.058 pmid:19095130
53 Sun Z, Dimpudus FJ, Nugroho J, Adipranoto JD. CT virtual intravascular endoscopy assessment of coronary artery plaques: a preliminary study. Eur J Radiol 2010; 75(1): e112-e119
doi: 10.1016/j.ejrad.2009.09.007 pmid:19781885
54 Habets J, Symersky P, van Herwerden LA, de Mol BAJM, Spijkerboer AM, Mali WP, Budde RPJ. Prosthetic heart valve assessment with multidetector-row CT: imaging characteristics of 91 valves in 83 patients. Eur Radiol 2011; 21(7): 1390-1396
doi: 10.1007/s00330-011-2068-8 pmid:21279515
55 Girard SE, Miller FA Jr, Orszulak TA, Mullany CJ, Montgomery S, Edwards WD, Tazelaar HD, Malouf JF, Tajik AJ. Reoperation for prosthetic aortic valve obstruction in the era of echocardiography: trends in diagnostic testing and comparison with surgical findings. J Am Coll Cardiol 2001; 37(2): 579-584
doi: 10.1016/S0735-1097(00)01113-X pmid:11216982
56 Konen E, Goitein O, Feinberg MS, Eshet Y, Raanani E, Rimon U, Di-Segni E. The role of ECG-gated MDCT in the evaluation of aortic and mitral mechanical valves: initial experience. Am J Roentgenol 2008; 191(1): 26-31
doi: 10.2214/AJR.07.2951 pmid:18562720
57 Parodi JC, Palmaz JC, Barone HD. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann Vasc Surg 1991; 5(6): 491-499
doi: 10.1007/BF02015271 pmid:1837729
58 Woodburn KR, May J, White GH. Endoluminal abdominal aortic aneurysm surgery. Br J Surg 1998; 85(4): 435-443
doi: 10.1046/j.1365-2168.1998.00775.x pmid:9607523
59 Prinssen M, Verhoeven EL, Buth J, Cuypers PW, van Sambeek MR, Balm R, Buskens E, Grobbee DE, Blankensteijn JD, Dutch Randomized Endovascular Aneurysm Management (DREAM)Trial Group. A randomized trial comparing conventional and endovascular repair of abdominal aortic aneurysms. N Engl J Med 2004; 351(16): 1607-1618
doi: 10.1056/NEJMoa042002 pmid:15483279
60 Greenhalgh RM, Brown LC, Kwong GP, Powell JT, Thompson SG, EVAR Trial Participants. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial. Lancet 2004; 364(9437): 843-848
doi: 10.1016/S0140-6736(04)16979-1 pmid:15351191
61 O’Donnell ME, Sun Z, Winder RJ, Ellis PK, Lau LL, Blair PH. Suprarenal fixation of endovascular aortic stent grafts: assessment of medium-term to long-term renal function by analysis of juxtarenal stent morphology. J Vasc Surg 2007; 45(4): 694-700
doi: 10.1016/j.jvs.2006.12.017 pmid:17398377
62 Lau LL, Hakaim AG, Oldenburg WA, Neuhauser B, McKinney JM, Paz-Fumagalli R, Stockland A. Effect of suprarenal versus infrarenal aortic endograft fixation on renal function and renal artery patency: a comparative study with intermediate follow-up. J Vasc Surg 2003; 37(6): 1162-1168
doi: 10.1016/S0741-5214(03)00083-1 pmid:12764259
63 Greenberg RK, Chuter TA, Lawrence-Brown M, Haulon S, Nolte L, Zenith Investigators. Analysis of renal function after aneurysm repair with a device using suprarenal fixation (Zenith AAA Endovascular Graft) in contrast to open surgical repair. J Vasc Surg 2004; 39(6): 1219-1228
doi: 10.1016/j.jvs.2004.02.033 pmid:15192560
64 Muhs BE, Verhoeven EL, Zeebregts CJ, Tielliu IF, Prins TR, Verhagen HJ, van den Dungen JJ. Mid-term results of endovascular aneurysm repair with branched and fenestrated endografts. J Vasc Surg 2006; 44(1): 9-15
doi: 10.1016/j.jvs.2006.02.056 pmid:16828419
65 Rydberg J, Kopecky KK, Johnson MS, Patel NH, Persohn SA, Lalka SG. Endovascular repair of abdominal aortic aneurysms: assessment with multislice CT.Am J Roentgenol 2001; 177(3): 607-614
pmid:11517055
66 Sun Z, Winder RJ, Kelly BE, Ellis PK, Kennedy PT, Hirst DG. Diagnostic value of CT virtual intravascular endoscopy in aortic stent-grafting. J Endovasc Ther 2004; 11(1): 13-25
doi: 10.1583/1545-1550(2004)011<0013:DVOCVI>2.0.CO;2 pmid:14748633
67 Sun Z, Winder RJ, Kelly BE, Ellis PK, Hirst DG. CT virtual intravascular endoscopy of abdominal aortic aneurysms treated with suprarenal endovascular stent grafting. Abdom Imaging 2003; 28(4): 580-587
doi: 10.1007/s00261-002-0069-4 pmid:14580104
68 Sun Z, O’Donnell ME, Winder RJ, Ellis PK, Blair PH. Effect of suprarenal fixation of aortic stent-grafts on the renal artery ostia: assessment of morphological changes by virtual intravascular endoscopy. J Endovasc Ther 2007; 14(5): 650-660
doi: 10.1583/1545-1550(2007)14[650:EOSFOA]2.0.CO;2 pmid:17924730
69 Sun Z, Allen YB, Nadkarni S, Knight R, Hartley DE, Lawrence-Brown MM. CT virtual intravascular endoscopy in the visualization of fenestrated stent-grafts. J Endovasc Ther 2008; 15(1): 42-51
doi: 10.1583/07-2234.1 pmid:18254667
70 Verhoeven EL, Prins TR, Tielliu IF, van den Dungen JJ, Zeebregts CJ, Hulsebos RG, van Andringa de Kempenaer MG, Oudkerk M, van Schilfgaarde R. Treatment of short-necked infrarenal aortic aneurysms with fenestrated stent-grafts: short-term results. Eur J Vasc Endovasc Surg 2004; 27(5): 477-483
doi: 10.1016/j.ejvs.2003.09.007 pmid:15079769
71 Scaglione M, Salvolini L, Casciani E, Giovagnoni A, Mazzei MA, Volterrani L. The many faces of aortic dissections: beware of unusual presentations. Eur J Radiol 2008; 65(3): 359-364
doi: 10.1016/j.ejrad.2007.09.021 pmid:17950552
72 Berger FH, van Lienden KP, Smithuis R, Nicolaou S, van Delden OM. Acute aortic syndrome and blunt traumatic aortic injury: pictorial review of MDCT imaging. Eur J Radiol 2010; 74(1): 24-39
doi: 10.1016/j.ejrad.2009.06.023 pmid:19665857
73 Nikolaou K, Thieme S, Sommer W, Johnson T, Reiser MF. Diagnosing pulmonary embolism: new computed tomography applications. J Thorac Imaging 2010; 25(2): 151-160
doi: 10.1097/RTI.0b013e3181d9ca1d pmid:20463534
74 Stein PD, Woodard PK, Weg JG, Wakefield TW, Tapson VF, Sostman HD, Sos TA, Quinn DA, Leeper KV Jr, Hull RD, Hales CA, Gottschalk A, Goodman LR, Fowler SE, Buckley JD, PIOPED II Investigators. Diagnostic pathways in acute pulmonary embolism: recommendations of the PIOPED II Investigators. Radiology 2007; 242(1): 15-21
doi: 10.1148/radiol.2421060971 pmid:17185658
75 Schoepf UJ, Holzknecht N, Helmberger TK, Crispin A, Hong C, Becker CR, Reiser MF. Subsegmental pulmonary emboli: improved detection with thin-collimation multi-detector row spiral CT. Radiology 2002; 222(2): 483-490
doi: 10.1148/radiol.2222001802 pmid:11818617
76 Ruzsics B, Schwarz F, Schoepf UJ, Lee YS, Bastarrika G, Chiaramida SA, Costello P, Zwerner PL. Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol 2009; 104(3): 318-326
doi: 10.1016/j.amjcard.2009.03.051 pmid:19616661
77 Nagao M, Kido T, Watanabe K, Saeki H, Okayama H, Kurata A, Hosokawa K, Higashino H, Mochizuki T. Functional assessment of coronary artery flow using adenosine stress dual-energy CT: a preliminary study. Int J Cardiovasc Imaging 2011; 27(3): 471-481
doi: 10.1007/s10554-010-9676-2 pmid:20686853
78 Weininger M, Schoepf UJ, Ramachandra A, Fink C, Rowe GW, Costello P, Henzler T. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: Initial results. Eur J Radiol 2010 Dec 29. [Epub ahead of print]
doi: 10.1016/j.ejrad.2010.11.022 pmid:21194865
79 Meyer M, Nance JW Jr, Schoepf UJ, Moscariello A, Weininger M, Rowe GW, Ruzsics B, Kang DK, Chiaramida SA, Schoenberg SO, Fink C, Henzler T. Cost-effectiveness of substituting dual-energy CT for SPECT in the assessment of myocardial perfusion for the workup of coronary artery disease. Eur J Radiol 2011 Jan 27. [Epub ahead of print]
doi: 10.1016/j.ejrad.2010.12.055 pmid:21277132
[1] Shuhang Wang, Peiwen Ma, Ning Jiang, Yale Jiang, Yue Yu, Yuan Fang, Huilei Miao, Huiyao Huang, Qiyu Tang, Dandan Cui, Hong Fang, Huishan Zhang, Qi Fan, Yuning Wang, Gang Liu, Zicheng Yu, Qi Lei, Ning Li. Rare tumors: a blue ocean of investigation[J]. Front. Med., 2023, 17(2): 220-230.
[2] Yashuang Yang, Guimei Li, Yanzhou Wang, Yan Sun, Chao Xu, Zhen Wei, Shuping Zhang, Ling Gao, Sijin Liu, Jiajun Zhao. Facile discovery of red blood cell deformation and compromised membrane/skeleton assembly in Prader–Willi syndrome[J]. Front. Med., 2022, 16(6): 946-956.
[3] Na Chen, Shuang Song, Xinmiao Bao, Lan Zhu. Update on Mayer–Rokitansky–Küster–Hauser syndrome[J]. Front. Med., 2022, 16(6): 859-872.
[4] Ying Deng, Zhaowei Sun, Lei Wang, Minghui Wang, Jie Yang, Genxi Li. Biosensor-based assay of exosome biomarker for early diagnosis of cancer[J]. Front. Med., 2022, 16(2): 157-175.
[5] Jianhai Yin, Mei Li, He Yan, Shuisen Zhou, Zhigui Xia. Laboratory diagnosis for malaria in the elimination phase in China: efforts and challenges[J]. Front. Med., 2022, 16(1): 10-16.
[6] Dongping Ning, Zhan Zhang, Kun Qiu, Lin Lu, Qin Zhang, Yan Zhu, Renzhi Wang. Efficacy of intelligent diagnosis with a dynamic uncertain causality graph model for rare disorders of sex development[J]. Front. Med., 2020, 14(4): 498-505.
[7] Yang Jiao, Zhan Zhang, Ting Zhang, Wen Shi, Yan Zhu, Jie Hu, Qin Zhang. Development of an artificial intelligence diagnostic model based on dynamic uncertain causality graph for the differential diagnosis of dyspnea[J]. Front. Med., 2020, 14(4): 488-497.
[8] Rui Zhou, Yuanshu Liu, Wenjun Huang, Xitong Dang. Potential functions of esophageal cancer-related gene-4 in the cardiovascular system[J]. Front. Med., 2019, 13(6): 639-645.
[9] Hanyu Zhu, Bo Fu, Yong Wang, Jing Gao, Qiuxia Han, Wenjia Geng, Xiaoli Yang, Guangyan Cai, Xiangmei Chen, Dong Zhang. Comparative analysis of membranous and other nephropathy subtypes and establishment of a diagnostic model[J]. Front. Med., 2019, 13(5): 618-625.
[10] Xiaolin Fan, Yanzhen Xiong, Yuan Wang. A reignited debate over the cell(s) of origin for glioblastoma and its clinical implications[J]. Front. Med., 2019, 13(5): 531-539.
[11] Min Zhang, Jingwen Yang, Wenjing Hua, Zhong Li, Zenghui Xu, Qijun Qian. Monitoring checkpoint inhibitors: predictive biomarkers in immunotherapy[J]. Front. Med., 2019, 13(1): 32-44.
[12] Liru Qiu, Fengjie Yang, Yonghua He, Huiqing Yuan, Jianhua Zhou. Clinical characterization and diagnosis of cystic fibrosis through exome sequencing in Chinese infants with Bartter-syndrome-like hypokalemia alkalosis[J]. Front. Med., 2018, 12(5): 550-558.
[13] Changlin Cao, Jingxian Gu, Jingyao Zhang. Soluble triggering receptor expressed on myeloid cell-1 (sTREM-1): a potential biomarker for the diagnosis of infectious diseases[J]. Front. Med., 2017, 11(2): 169-177.
[14] Lei Huang,Aman Xu. Detection of digestive malignancies and post-gastrectomy complications via gastrointestinal fluid examination[J]. Front. Med., 2017, 11(1): 20-31.
[15] Jing Zhang,Shan Gao,Zhongping Duan,Ke-Qin Hu. Overview on acute-on-chronic liver failure[J]. Front. Med., 2016, 10(1): 1-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed