Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2011, Vol. 5 Issue (4) : 356-371     DOI: 10.1007/s11684-011-0159-1
REVIEW |
Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity
Chuanfeng Wu, Cynthia E. Dunbar()
Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
Download: PDF(382 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

Virus-based vectors are widely used in hematopoietic stem cell (HSC) gene therapy, and have the ability to integrate permanently into genomic DNA, thus driving long-term expression of corrective genes in all hematopoietic lineages. To date, HSC gene therapy has been successfully employed in the clinic for improving clinical outcomes in small numbers of patients with X-linked severe combined immunodeficiency (SCID-X1), adenosine deaminase deficiency (ADA-SCID), adrenoleukodystrophy (ALD), thalassemia, chronic granulomatous disease (CGD), and Wiskott-Aldrich syndrome (WAS). However, adverse events were observed during some of these HSC gene therapy clinical trials, linked to insertional activation of proto-oncogenes by integrated proviral vectors leading to clonal expansion and eventual development of leukemia. Numerous studies have been performed to understand the molecular basis of vector-mediated genotoxicity, with the aim of developing safer vectors and lower-risk gene therapy protocols. This review will summarize current information on the mechanisms of insertional mutagenesis in hematopoietic stem and progenitor cells due to integrating gene transfer vectors, discuss the available assays for predicting genotoxicity and mapping vector integration sites, and introduce newly-developed approaches for minimizing genotoxicity as a way to further move HSC gene therapy forward into broader clinical application.

Keywords gene therapy      hematopoietic stem cells      insertional mutagenesis      genotoxicity      induced pluripotent stem cell     
Corresponding Authors: E. Dunbar Cynthia,Email:dunbarc@nhlbi.nih.gov   
Issue Date: 05 December 2011
URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-011-0159-1     OR     http://academic.hep.com.cn/fmd/EN/Y2011/V5/I4/356
DiseasesPatientsVector backboneTransgeneFollow-upSevere adverse effectsInsertion sites (clonal dominance)Clinical outcomeReferences
SCID-X19MFG γ-retroviral vectorγC9 years (range, 8 to 11)T-ALL in four patientsNo.1LMO2Died despite chemotherapy[1,2,10,15]
No.2LMO2Remission with chemotherapy
No.3CCND2Remission with chemotherapy
No.4LMO2, BMI1Remission with chemotherapy
Other 5No clonal dominanceAlive, improved immune function
SCID-X110MFG γ-retroviral vectorγC5 yearsT-ALL in one patientNo.1LMO2Remission with chemotherapy[14,16]
Other 9No clonal dominanceAlive with improved immune function
ADA-SCID10GIADAl MLV-based retroviral vectorADA4.0 years (range, 1.8 to 8.0)NoneIntegration hotspots near DYRK1A,BLM,LMO2, CCND2 and BCL2 no clonal selection )All alive with improved immune and metabolic parameters[3,4]
X-CGD2pSF7, SFFV-based retrovirus vectorgp91phox4 yearsMDSNo.1MDS1/Evi1, PRDM16, and SETBP1Died from sepsis 27 months[5,9]
MDSNo.2MDS1/Evi1, PRDM16, and SETBP1Underwent an allogeneic HSC transplantation at month 45
X-CGD3MFGS retroviral vectorgp91phox3 yearsNoneNo clonal dominanceClinical improvement[6]
X-ALD2HIV-1-derived lentiviral vectorABCD124 to 30 monthsNoneNo clonal dominanceAlive with decreased progression of neurologic phenotype[7]
β-thalassemia1HIV-1-derived lentiviral vectorβ-globin33 monthsNoneDominant HMGA2 expression cloneAlive and transfusion-independent[26]
WAS2CMMP retroviral vectorWASP3 yearsT-ALL in one patient(LMO2)LMO2, CCND2, and BMI1 in T-cells, and MDS1/EVI1, PRDM16, and SETBP1 in granulocytesT-ALL patient with ongoing chemotherapy, the other alive with improved immune function and decreased cytopenias[8]
Tab.1  Reported genotoxic events in HSC gene therapy clinical trials
Fig.1  Schematic diagrams for summarizing the different methods available to identify proviral insertion sites. (A)Methods requiring restriction enzyme digestion adjacent to insertion sites, including inverse PCR, LM-PCR, LAM-PCR and multi-arm optimized LAM-PCR. (B) Methods without restriction enzyme digestion, including FLEA-PCR, nrLAM-PCR and transposase MuA based-PCR. (Timeline shows the year when each method was first described.)
1 Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288(5466): 669–672
doi: 10.1126/science.288.5466.669 pmid:10784449
2 Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, Martinache C, Rieux-Laucat F, Latour S, Belohradsky BH, Leiva L, Sorensen R, Debré M, Casanova JL, Blanche S, Durandy A, Bushman FD, Fischer A, Cavazzana-Calvo M. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2010; 363(4): 355–364
doi: 10.1056/NEJMoa1000164 pmid:20660403
3 Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, Morecki S, Andolfi G, Tabucchi A, Carlucci F, Marinello E, Cattaneo F, Vai S, Servida P, Miniero R, Roncarolo MG, Bordignon C. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296(5577): 2410–2413
doi: 10.1126/science.1070104 pmid:12089448
4 Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, Scaramuzza S, Andolfi G, Mirolo M, Brigida I, Tabucchi A, Carlucci F, Eibl M, Aker M, Slavin S, Al-Mousa H, Al Ghonaium A, Ferster A, Duppenthaler A, Notarangelo L, Wintergerst U, Buckley RH, Bregni M, Marktel S, Valsecchi MG, Rossi P, Ciceri F, Miniero R, Bordignon C, Roncarolo MG. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009; 360(5): 447–458
doi: 10.1056/NEJMoa0805817 pmid:19179314
5 Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H, Kühlcke K, Schilz A, Kunkel H, Naundorf S, Brinkmann A, Deichmann A, Fischer M, Ball C, Pilz I, Dunbar C, Du Y, Jenkins NA, Copeland NG, Lüthi U, Hassan M, Thrasher AJ, Hoelzer D, von Kalle C, Seger R, Grez M. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12(4): 401–409
doi: 10.1038/nm1393 pmid:16582916
6 Kang EM, Choi U, Theobald N, Linton G, Long Priel DA, Kuhns D, Malech HL. Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood 2010; 115(4): 783–791
doi: 10.1182/blood-2009-05-222760 pmid:19965657
7 Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, Vidaud M, Abel U, Dal-Cortivo L, Caccavelli L, Mahlaoui N, Kiermer V, Mittelstaedt D, Bellesme C, Lahlou N, Lefrère F, Blanche S, Audit M, Payen E, Leboulch P, l’Homme B, Bougnères P, Von Kalle C, Fischer A, Cavazzana-Calvo M, Aubourg P. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326(5954): 818–823
doi: 10.1126/science.1171242 pmid:19892975
8 Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Díez IA, Dewey RA, B?hm M, Nowrouzi A, Ball CR, Glimm H, Naundorf S, Kühlcke K, Blasczyk R, Kondratenko I, Maródi L, Orange JS, von Kalle C, Klein C. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 2010; 363(20): 1918–1927
doi: 10.1056/NEJMoa1003548 pmid:21067383
9 Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, Schmidt M, Kr?mer A, Schw?ble J, Glimm H, Koehl U, Preiss C, Ball C, Martin H, G?hring G, Schwarzwaelder K, Hofmann WK, Karakaya K, Tchatchou S, Yang R, Reinecke P, Kühlcke K, Schlegelberger B, Thrasher AJ, Hoelzer D, Seger R, von Kalle C, Grez M. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010; 16(2): 198–204
doi: 10.1038/nm.2088 pmid:20098431
10 Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302(5644): 415–419
doi: 10.1126/science.1088547 pmid:14564000
11 Leonard WJ. The molecular basis of X-linked severe combined immunodeficiency: defective cytokine receptor signaling. Annu Rev Med 1996; 47: 229–239
doi: 10.1146/annurev.med.47.1.229 pmid:8712778
12 Sugamura K, Asao H, Kondo M, Tanaka N, Ishii N, Ohbo K, Nakamura M, Takeshita T. The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu Rev Immunol 1996; 14(1): 179–205
doi: 10.1146/annurev.immunol.14.1.179 pmid:8717512
13 Fischer A, Hacein-Bey-Abina S, Cavazzana-Calvo M. 20 years of gene therapy for SCID. Nat Immunol 2010; 11(6): 457–460
doi: 10.1038/ni0610-457 pmid:20485269
14 Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, Brouns G, Schmidt M, Von Kalle C, Barington T, Jakobsen MA, Christensen HO, Al Ghonaium A, White HN, Smith JL, Levinsky RJ, Ali RR, Kinnon C, Thrasher AJ. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364(9452): 2181–2187
doi: 10.1016/S0140-6736(04)17590-9 pmid:15610804
15 Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, MacIntyre E, Dal Cortivo L, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky BH, Wintergerst U, Velez MC, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman FD, Fischer A, Cavazzana-Calvo M. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118(9): 3132–3142
doi: 10.1172/JCI35700 pmid:18688285
16 Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K, Chatters SJ, de Ridder D, Gilmour KC, Adams S, Thornhill SI, Parsley KL, Staal FJ, Gale RE, Linch DC, Bayford J, Brown L, Quaye M, Kinnon C, Ancliff P, Webb DK, Schmidt M, von Kalle C, Gaspar HB, Thrasher AJ. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 2008; 118(9): 3143–3150
doi: 10.1172/JCI35798 pmid:18688286
17 Davé UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagenesis insights. Science 2004; 303(5656): 333
doi: 10.1126/science.1091667 pmid:14726584
18 Woods NB, Bottero V, Schmidt M, von Kalle C, Verma IM. Gene therapy: therapeutic gene causing lymphoma. Nature 2006; 440(7088): 1123
doi: 10.1038/4401123a pmid:16641981
19 Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P, Greenblatt JJ, Rosenberg SA, Klein H, Berger M, Mullen CA, Ramsey WJ, Muul L, Morgan RA, Anderson WF. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 1995; 270(5235): 475–480
doi: 10.1126/science.270.5235.475 pmid:7570001
20 Kohn DB, Hershfield MS, Carbonaro D, Shigeoka A, Brooks J, Smogorzewska EM, Barsky LW, Chan R, Burotto F, Annett G, Nolta JA, Crooks G, Kapoor N, Elder M, Wara D, Bowen T, Madsen E, Snyder FF, Bastian J, Muul L, Blaese RM, Weinberg K, Parkman R. T lymphocytes with a normal ADA gene accumulate after transplantation of transduced autologous umbilical cord blood CD34+ cells in ADA-deficient SCID neonates. Nat Med 1998; 4(7): 775–780
doi: 10.1038/nm0798-775 pmid:9662367
21 Cassani B, Montini E, Maruggi G, Ambrosi A, Mirolo M, Selleri S, Biral E, Frugnoli I, Hernandez-Trujillo V, Di Serio C, Roncarolo MG, Naldini L, Mavilio F, Aiuti A. Integration of retroviral vectors induces minor changes in the transcriptional activity of T cells from ADA-SCID patients treated with gene therapy. Blood 2009; 114(17): 3546–3556
doi: 10.1182/blood-2009-02-202085 pmid:19652199
22 Aiuti A, Cassani B, Andolfi G, Mirolo M, Biasco L, Recchia A, Urbinati F, Valacca C, Scaramuzza S, Aker M, Slavin S, Cazzola M, Sartori D, Ambrosi A, Di Serio C, Roncarolo MG, Mavilio F, Bordignon C. Multilineage hematopoietic reconstitution without clonal selection in ADA-SCID patients treated with stem cell gene therapy. J Clin Invest 2007; 117(8): 2233–2240
doi: 10.1172/JCI31666 pmid:17671653
23 Heyworth PG, Cross AR, Curnutte JT. Chronic granulomatous disease. Curr Opin Immunol 2003; 15(5): 578–584
doi: 10.1016/S0952-7915(03)00109-2 pmid:14499268
24 Moser HW, Mahmood A, Raymond GV. X-linked adrenoleukodystrophy. Nat Clin Pract Neurol 2007; 3(3): 140–151
doi: 10.1038/ncpneuro0421 pmid:17342190
25 Yannaki E, Emery DW, Stamatoyannopoulos G. Gene therapy for β-thalassaemia: the continuing challenge. Expert Rev Mol Med 2010; 12: e31
doi: 10.1017/S1462399410001626 pmid:20883576
26 Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R, Maouche-Chrétien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ, Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B, Gourmel B, Socie G, Chrétien S, Cartier N, Aubourg P, Fischer A, Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F, Hacein-Bey-Abina S, Leboulch P. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 2010; 467(7313): 318–322
doi: 10.1038/nature09328 pmid:20844535
27 Ikeda K, Mason PJ, Bessler M. 3’UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice. Blood 2011; 117(22): 5860–5869
doi: 10.1182/blood-2011-02-334425 pmid:21460244
28 Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics 1988; 120(3): 621–623
pmid:2852134
29 Kim HJ, Tisdale JF, Wu T, Takatoku M, Sellers SE, Zickler P, Metzger ME, Agricola BA, Malley JD, Kato I, Donahue RE, Brown KE, Dunbar CE. Many multipotential gene-marked progenitor or stem cell clones contribute to hematopoiesis in nonhuman primates. Blood 2000; 96(1): 1–8
pmid:10891424
30 Suzuki T, Minehata K, Akagi K, Jenkins NA, Copeland NG. Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. EMBO J 2006; 25(14): 3422–3431
doi: 10.1038/sj.emboj.7601215 pmid:16858412
31 Mueller PR, Wold B. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 1989; 246(4931): 780–786
doi: 2814500" target="_blank">10.1126/science. pmid:2814500 pmid:2814500
32 Kustikova OS, Baum C, Fehse B. Retroviral integration site analysis in hematopoietic stem cells. Methods Mol Biol 2008; 430: 255–267
doi: 10.1007/978-1-59745-182-6_18 pmid:18370305
33 Kustikova O, Fehse B, Modlich U, Yang M, Düllmann J, Kamino K, von Neuhoff N, Schlegelberger B, Li Z, Baum C. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 2005; 308(5725): 1171–1174
doi: 10.1126/science.1105063 pmid:15905401
34 Schmidt M, Schwarzwaelder K, Bartholomae CC, Glimm H, von Kalle C. Detection of retroviral integration sites by linear amplification-mediated PCR and tracking of individual integration clones in different samples. Methods Mol Biol 2009; 506: 363–372
doi: 10.1007/978-1-59745-409-4_24 pmid:19110638
35 Schmidt M, Zickler P, Hoffmann G, Haas S, Wissler M, Muessig A, Tisdale JF, Kuramoto K, Andrews RG, Wu T, Kiem HP, Dunbar CE, von Kalle C. Polyclonal long-term repopulating stem cell clones in a primate model. Blood 2002; 100(8): 2737–2743
doi: 10.1182/blood-2002-02-0407 pmid:12351380
36 Schmidt M, Schwarzwaelder K, Bartholomae C, Zaoui K, Ball C, Pilz I, Braun S, Glimm H, von Kalle C. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 2007; 4(12): 1051–1057
doi: 10.1038/nmeth1103 pmid:18049469
37 Hematti P, Hong BK, Ferguson C, Adler R, Hanawa H, Sellers S, Holt IE, Eckfeldt CE, Sharma Y, Schmidt M, von Kalle C, Persons DA, Billings EM, Verfaillie CM, Nienhuis AW, Wolfsberg TG, Dunbar CE, Calmels B. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2004; 2(12): e423
doi: 10.1371/journal.pbio.0020423 pmid:15550989
38 Harkey MA, Kaul R, Jacobs MA, Kurre P, Bovee D, Levy R, Blau CA. Multiarm high-throughput integration site detection: limitations of LAM-PCR technology and optimization for clonal analysis. Stem Cells Dev 2007; 16(3): 381–392
doi: 10.1089/scd.2007.0015 pmid:17610368
39 Gabriel R, Eckenberg R, Paruzynski A, Bartholomae CC, Nowrouzi A, Arens A, Howe SJ, Recchia A, Cattoglio C, Wang W, Faber K, Schwarzwaelder K, Kirsten R, Deichmann A, Ball CR, Balaggan KS, Yá?ez-Mu?oz RJ, Ali RR, Gaspar HB, Biasco L, Aiuti A, Cesana D, Montini E, Naldini L, Cohen-Haguenauer O, Mavilio F, Thrasher AJ, Glimm H, von Kalle C, Saurin W, Schmidt M. Comprehensive genomic access to vector integration in clinical gene therapy. Nat Med 2009; 15(12): 1431–1436
doi: 10.1038/nm.2057 pmid:19966782
40 Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437(7057): 376–380
pmid:16056220
41 Wang GP, Garrigue A, Ciuffi A, Ronen K, Leipzig J, Berry C, Lagresle-Peyrou C, Benjelloun F, Hacein-Bey-Abina S, Fischer A, Cavazzana-Calvo M, Bushman FD. DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer. Nucleic Acids Res 2008; 36(9): e49
doi: 10.1093/nar/gkn125 pmid:18411205
42 Pule MA, Rousseau A, Vera J, Heslop HE, Brenner MK, Vanin EF. Flanking-sequence exponential anchored-polymerase chain reaction amplification: a sensitive and highly specific method for detecting retroviral integrant-host-junction sequences. Cytotherapy 2008; 10(5): 526–539
doi: 10.1080/14653240802192636 pmid:18821360
43 Brady T, Roth SL, Malani N, Wang GP, Berry CC, Leboulch P, Hacein-Bey-Abina S, Cavazzana-Calvo M, Papapetrou EP, Sadelain M, Savilahti H, Bushman FD. A method to sequence and quantify DNA integration for monitoring outcome in gene therapy. Nucleic Acids Res 2011; 39(11): e72
doi: 10.1093/nar/gkr140 pmid:21415009
44 Schr?der AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110(4): 521–529
doi: 10.1016/S0092-8674(02)00864-4 pmid:12202041
45 Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem HP, Kaul R, Russell DW. Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci USA 2006; 103(5): 1498–1503
doi: 10.1073/pnas.0510046103 pmid:16428288
46 Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2004; 2(8): e234
doi: 10.1371/journal.pbio.0020234 pmid:15314653
47 Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300(5626): 1749–1751
doi: 10.1126/science.1083413 pmid:12805549
48 Narezkina A, Taganov KD, Litwin S, Stoyanova R, Hayashi J, Seeger C, Skalka AM, Katz RA. Genome-wide analyses of avian sarcoma virus integration sites. J Virol 2004; 78(21): 11656–11663
doi: 10.1128/JVI.78.21.11656-11663.2004 pmid:15479807
49 Trobridge GD. Genotoxicity of retroviral hematopoietic stem cell gene therapy. Expert Opin Biol Ther 2011; 11(5): 581–593
doi: 10.1517/14712598.2011.562496 pmid:21375467
50 Biasco L, Ambrosi A, Pellin D, Bartholomae C, Brigida I, Roncarolo MG, Di Serio C, von Kalle C, Schmidt M, Aiuti A. Integration profile of retroviral vector in gene therapy treated patients is cell-specific according to gene expression and chromatin conformation of target cell. EMBO Mol Med 2011; 3(2): 89–101
doi: 10.1002/emmm.201000108 pmid:21243617
51 Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 2007; 17(8): 1186–1194
doi: 10.1101/gr.6286907 pmid:17545577
52 Brady T, Agosto LM, Malani N, Berry CC, O’Doherty U, Bushman F. HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 2009; 23(12): 1461–1471
doi: 10.1097/QAD.0b013e32832caf28 pmid:19550285
53 Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, Crawford G, Collins F, Shinn P, Leipzig J, Hannenhalli S, Berry CC, Ecker JR, Bushman FD. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog 2006; 2(6): e60
doi: 10.1371/journal.ppat.0020060 pmid:16789841
54 Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, De Clercq E, Debyser Z. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 2003; 278(1): 372–381
doi: 10.1074/jbc.M209278200 pmid:12407101
55 Llano M, Delgado S, Vanegas M, Poeschla EM. Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J Biol Chem 2004; 279(53): 55570–55577
doi: 10.1074/jbc.M408508200 pmid:15475359
56 Emiliani S, Mousnier A, Busschots K, Maroun M, Van Maele B, Tempé D, Vandekerckhove L, Moisant F, Ben-Slama L, Witvrouw M, Christ F, Rain JC, Dargemont C, Debyser Z, Benarous R. Integrase mutants defective for interaction with LEDGF/p75 are impaired in chromosome tethering and HIV-1 replication. J Biol Chem 2005; 280(27): 25517–25523
doi: 10.1074/jbc.M501378200 pmid:15855167
57 Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 2005; 11(12): 1287–1289
doi: 10.1038/nm1329 pmid:16311605
58 Modlich U, Bohne J, Schmidt M, von Kalle C, Kn?ss S, Schambach A, Baum C. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 2006; 108(8): 2545–2553
doi: 10.1182/blood-2005-08-024976 pmid:16825499
59 Du Y, Jenkins NA, Copeland NG. Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood 2005; 106(12): 3932–3939
doi: 10.1182/blood-2005-03-1113 pmid:16109773
60 Zychlinski D, Schambach A, Modlich U, Maetzig T, Meyer J, Grassman E, Mishra A, Baum C. Physiological promoters reduce the genotoxic risk of integrating gene vectors. Mol Ther 2008; 16(4): 718–725
doi: 10.1038/mt.2008.5 pmid:18334985
61 Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH, Schambach A, Charrier S, Galy A, Thrasher AJ, Bueren J, Baum C. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther 2009; 17(11): 1919–1928
doi: 10.1038/mt.2009.179 pmid:19672245
62 Donahue RE, Kessler SW, Bodine D, McDonagh K, Dunbar C, Goodman S, Agricola B, Byrne E, Raffeld M, Moen R. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 1992; 176(4): 1125–1135
doi: 10.1084/jem.176.4.1125 pmid:1383375" target="blank">1383375
63 Li Z, Düllmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J, Forster M, Stocking C, Wahlers A, Frank O, Ostertag W, Kühlcke K, Eckert HG, Fehse B, Baum C. Murine leukemia induced by retroviral gene marking. Science 2002; 296(5567): 497
doi: 10.1126/science.1068893 pmid:11964471
64 Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C, Sergi Sergi L, Benedicenti F, Ambrosi A, Di Serio C, Doglioni C, von Kalle C, Naldini L. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24(6): 687–696
doi: 10.1038/nbt1216 pmid:16732270
65 Lund AH, Turner G, Trubetskoy A, Verhoeven E, Wientjens E, Hulsman D, Russell R, DePinho RA, Lenz J, van Lohuizen M. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet 2002; 32(1): 160–165
doi: 10.1038/ng956 pmid:12185367
66 Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M, Benedicenti F, Sergi LS, Ambrosi A, Ponzoni M, Doglioni C, Di Serio C, von Kalle C, Naldini L. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009; 119(4): 964–975
doi: 10.1172/JCI37630 pmid:19307726
67 Drake AC, Khoury M, Leskov I, Iliopoulou BP, Fragoso M, Lodish H, Chen J. Human CD34+ CD133+ hematopoietic stem cells cultured with growth factors including Angptl5 efficiently engraft adult NOD-SCID Il2rγ-/- (NSG) mice. PLoS ONE 2011; 6(4): e18382
doi: 10.1371/journal.pone.0018382 pmid:21559522
68 Frecha C, Fusil F, Cosset FL, Verhoeyen E. In vivo gene delivery into hCD34+ cells in a humanized mouse model. Methods Mol Biol 2011; 737: 367–390
doi: 10.1007/978-1-61779-095-9_15 pmid:21590405
69 Joseph A, Zheng JH, Chen K, Dutta M, Chen C, Stiegler G, Kunert R, Follenzi A, Goldstein H. Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol 2010; 84(13): 6645–6653
doi: 10.1128/JVI.02339-09 pmid:20410262
70 Spraul CW, Roth HJ, G?ckle H, Lang GE, Lang GK. Influence of special-effect contact lenses (Crazy Lenses) on visual function. CLAO J 1998; 24(1): 29–32
pmid:9474450
71 Trobridge GD, Kiem HP. Large animal models of hematopoietic stem cell gene therapy. Gene Ther 2010; 17(8): 939–948
doi: 10.1038/gt.2010.47 pmid:20428209
72 Felsburg PJ, Somberg RL, Perryman LE. Domestic animal models of severe combined immunodeficiency: canine X-linked severe combined immunodeficiency and severe combined immunodeficiency in horses. Immunodefic Rev 1992; 3(4): 277–303
pmid:1449787
73 Spellacy E, Shull RM, Constantopoulos G, Neufeld EF. A canine model of human alpha-L-iduronidase deficiency. Proc Natl Acad Sci USA 1983; 80(19): 6091–6095
doi: 10.1073/pnas.80.19.6091 pmid:6412235
74 Kijas JM, Bauer TR Jr, G?fvert S, Marklund S, Trowald-Wigh G, Johannisson A, Hedhammar A, Binns M, Juneja RK, Hickstein DD, Andersson L. A missense mutation in the beta-2 integrin gene (ITGB2) causes canine leukocyte adhesion deficiency. Genomics 1999; 61(1): 101–107
doi: 10.1006/geno.1999.5948 pmid:10512685
75 Beard BC, Kiem HP. Canine models of gene-modified hematopoiesis. Methods Mol Biol 2009; 506: 341–361
doi: 10.1007/978-1-59745-409-4_23 pmid:19110637
76 Ting-De Ravin SS, Kennedy DR, Naumann N, Kennedy JS, Choi U, Hartnett BJ, Linton GF, Whiting-Theobald NL, Moore PF, Vernau W, Malech HL, Felsburg PJ. Correction of canine X-linked severe combined immunodeficiency by in vivo retroviral gene therapy. Blood 2006; 107(8): 3091–3097
doi: 10.1182/blood-2005-10-4057 pmid:16384923
77 Bauer TR Jr, Hai M, Tuschong LM, Burkholder TH, Gu YC, Sokolic RA, Ferguson C, Dunbar CE, Hickstein DD. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy. Blood 2006; 108(10): 3313–3320
doi: 10.1182/blood-2006-03-006908 pmid:16868255
78 Beard BC, Keyser KA, Trobridge GD, Peterson LJ, Miller DG, Jacobs M, Kaul R, Kiem HP. Unique integration profiles in a canine model of long-term repopulating cells transduced with gammaretrovirus, lentivirus, or foamy virus. Hum Gene Ther 2007; 18(5): 423–434
doi: 10.1089/hum.2007.011 pmid:17518616
79 Kiem HP, Sellers S, Thomasson B, Morris JC, Tisdale JF, Horn PA, Hematti P, Adler R, Kuramoto K, Calmels B, Bonifacino A, Hu J, von Kalle C, Schmidt M, Sorrentino B, Nienhuis A, Blau CA, Andrews RG, Donahue RE, Dunbar CE. Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: no progression to clonal hematopoiesis or leukemia. Mol Ther 2004; 9(3): 389–395
doi: 10.1016/j.ymthe.2003.12.006 pmid:15006605
80 Seggewiss R, Pittaluga S, Adler RL, Guenaga FJ, Ferguson C, Pilz IH, Ryu B, Sorrentino BP, Young WS 3rd, Donahue RE, von Kalle C, Nienhuis AW, Dunbar CE. Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood 2006; 107(10): 3865–3867
doi: 10.1182/blood-2005-10-4108 pmid:16439674
81 Calmels B, Ferguson C, Laukkanen MO, Adler R, Faulhaber M, Kim HJ, Sellers S, Hematti P, Schmidt M, von Kalle C, Akagi K, Donahue RE, Dunbar CE. Recurrent retroviral vector integration at the Mds1/Evi1 locus in nonhuman primate hematopoietic cells. Blood 2005; 106(7): 2530–2533
doi: 10.1182/blood-2005-03-1115 pmid:15933056
82 Kim YJ, Kim YS, Larochelle A, Renaud G, Wolfsberg TG, Adler R, Donahue RE, Hematti P, Hong BK, Roayaei J, Akagi K, Riberdy JM, Nienhuis AW, Dunbar CE, Persons DA. Sustained high-level polyclonal hematopoietic marking and transgene expression 4 years after autologous transplantation of rhesus macaques with SIV lentiviral vector-transduced CD34+ cells. Blood 2009; 113(22): 5434–5443
doi: 10.1182/blood-2008-10-185199 pmid:19339698
83 Sellers S, Gomes TJ, Larochelle A, Lopez R, Adler R, Krouse A, Donahue RE, Childs RW, Dunbar CE. Ex vivo expansion of retrovirally transduced primate CD34+ cells results in overrepresentation of clones with MDS1/EVI1 insertion sites in the myeloid lineage after transplantation. Mol Ther 2010; 18(9): 1633–1639
doi: 10.1038/mt.2010.117 pmid:20571542
84 Hu J, Renaud G, Gomes TJ, Ferris A, Hendrie PC, Donahue RE, Hughes SH, Wolfsberg TG, Russell DW, Dunbar CE. Reduced genotoxicity of avian sarcoma leukosis virus vectors in rhesus long-term repopulating cells compared to standard murine retrovirus vectors. Mol Ther 2008; 16(9): 1617–1623
doi: 10.1038/mt.2008.135 pmid:18578011
85 Hu J, Ferris A, Larochelle A, Krouse AE, Metzger ME, Donahue RE, Hughes SH, Dunbar CE. Transduction of rhesus macaque hematopoietic stem and progenitor cells with avian sarcoma and leukosis virus vectors. Hum Gene Ther 2007; 18(8): 691–700
doi: 10.1089/hum.2006.175 pmid:17655493
86 Deeks SG, Wagner B, Anton PA, Mitsuyasu RT, Scadden DT, Huang C, Macken C, Richman DD, Christopherson C, June CH, Lazar R, Broad DF, Jalali S, Hege KM. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther 2002; 5(6): 788–797
doi: 10.1006/mthe.2002.0611 pmid:12027564
87 Mitsuyasu RT, Anton PA, Deeks SG, Scadden DT, Connick E, Downs MT, Bakker A, Roberts MR, June CH, Jalali S, Lin AA, Pennathur-Das R, Hege KM. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood 2000; 96(3): 785–793
pmid:10910888
88 Walker RE, Bechtel CM, Natarajan V, Baseler M, Hege KM, Metcalf JA, Stevens R, Hazen A, Blaese RM, Chen CC, Leitman SF, Palensky J, Wittes J, Davey RT Jr, Falloon J, Polis MA, Kovacs JA, Broad DF, Levine BL, Roberts MR, Masur H, Lane HC. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 2000; 96(2): 467–474
pmid:10887107
89 Newrzela S, Cornils K, Li Z, Baum C, Brugman MH, Hartmann M, Meyer J, Hartmann S, Hansmann ML, Fehse B, von Laer D. Resistance of mature T cells to oncogene transformation. Blood 2008; 112(6): 2278–2286
doi: 10.1182/blood-2007-12-128751 pmid:18566328
90 Persons DA. Lentiviral vector gene therapy: effective and safe? Mol Ther 2010; 18(5): 861–862
doi: 10.1038/mt.2010.70 pmid:20436489
91 Nowrouzi A, Dittrich M, Klanke C, Heinkelein M, Rammling M, Dandekar T, von Kalle C, Rethwilm A. Genome-wide mapping of foamy virus vector integrations into a human cell line. J Gen Virol 2006; 87(Pt 5): 1339–1347
doi: 10.1099/vir.0.81554-0 pmid:16603537
92 Nienhuis AW, Dunbar CE, Sorrentino BP. Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 2006; 13(6): 1031–1049
doi: 10.1016/j.ymthe.2006.03.001 pmid:16624621
93 Dorrell C, Gan OI, Pereira DS, Hawley RG, Dick JE. Expansion of human cord blood CD34(+)CD38(-) cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood 2000; 95(1): 102–110
pmid:10607692
94 Williams DA. Ex vivo expansion of hematopoietic stem and progenitor cells—robbing Peter to pay Paul? Blood 1993; 81(12): 3169–3172
pmid:8507858
95 Dunbar CE, Takatoku M, Donahue RE. The impact of ex vivo cytokine stimulation on engraftment of primitive hematopoietic cells in a non-human primate model. Ann N Y Acad Sci 2001;938: 236–244 ; discussion 244–245
doi: 10.1111/j.1749-6632.2001.tb03594.x pmid:11458513
96 Spencer DM. Developments in suicide genes for preclinical and clinical applications. Curr Opin Mol Ther 2000; 2(4): 433–440
pmid:11249774
97 Lupo-Stanghellini MT, Provasi E, Bondanza A, Ciceri F, Bordignon C, Bonini C. Clinical impact of suicide gene therapy in allogeneic hematopoietic stem cell transplantation. Hum Gene Ther 2010; 21(3): 241–250
doi: 10.1089/hum.2010.014 pmid:20121594
98 Ciceri F, Bonini C, Gallo-Stampino C, Bordignon C. Modulation of GvHD by suicide-gene transduced donor T lymphocytes: clinical applications in mismatched transplantation. Cytotherapy 2005; 7(2): 144–149
doi: 10.1080/14653240510018136 pmid:16040393
99 Bonini C, Bondanza A, Perna SK, Kaneko S, Traversari C, Ciceri F, Bordignon C. The suicide gene therapy challenge: how to improve a successful gene therapy approach. Mol Ther 2007; 15(7): 1248–1252
doi: 10.1038/sj.mt.6300190 pmid:17505474
100 Frank O, Rudolph C, Heberlein C, von Neuhoff N, Schr?ck E, Schambach A, Schlegelberger B, Fehse B, Ostertag W, Stocking C, Baum C. Tumor cells escape suicide gene therapy by genetic and epigenetic instability. Blood 2004; 104(12): 3543–3549
doi: 10.1182/blood-2004-03-0852 pmid:15308565
101 Uckert W, Kammert?ns T, Haack K, Qin Z, Gebert J, Schendel DJ, Blankenstein T. Double suicide gene (cytosine deaminase and herpes simplex virus thymidine kinase) but not single gene transfer allows reliable elimination of tumor cells in vivo. Hum Gene Ther 1998; 9(6): 855–865
doi: 10.1089/hum.1998.9.6-855 pmid:9581908
102 Straathof KC, Pulè MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, Heslop HE, Spencer DM, Rooney CM. An inducible caspase 9 safety switch for T-cell therapy. Blood 2005; 105(11): 4247–4254
doi: 10.1182/blood-2004-11-4564 pmid:15728125
103 Tey SK, Dotti G, Rooney CM, Heslop HE, Brenner MK. Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant 2007; 13(8): 913–924
doi: 10.1016/j.bbmt.2007.04.005 pmid:17640595
104 Quintarelli C, Vera JF, Savoldo B, Giordano Attianese GM, Pule M, Foster AE, Heslop HE, Rooney CM, Brenner MK, Dotti G. Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes. Blood 2007; 110(8): 2793–2802
doi: 10.1182/blood-2007-02-072843 pmid:17638856
105 Zhong B,Watts KL,Gori JL,Wohlfahrt ME,Enssle J,Adair JE, Kiem H P. Safeguarding nonhuman primate iPS cells with suicide genes. Mol Ther , 2011; 19:1667 -1675
doi: 10.1038/mt.2011.51 pmid:21587213
106 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663–676
doi: 10.1016/j.cell.2006.07.024 pmid:16904174
107 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861–872
doi: 10.1016/j.cell.2007.11.019 pmid:18035408
108 Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318(5858): 1920–1923
doi: 10.1126/science.1152092 pmid:18063756
109 Raya A, Rodríguez-Pizà I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castellà M, Río P, Sleep E, González F, Tiscornia G, Garreta E, Aasen T, Veiga A, Verma IM, Surrallés J, Bueren J, Izpisúa Belmonte JC. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 2009; 460(7251): 53–59
doi: 10.1038/nature08129 pmid:19483674
110 Kane NM, Nowrouzi A, Mukherjee S, Blundell MP, Greig JA, Lee WK, Houslay MD, Milligan G, Mountford JC, von Kalle C, Schmidt M, Thrasher AJ, Baker AH. Lentivirus-mediated reprogramming of somatic cells in the absence of transgenic transcription factors. Mol Ther 2010; 18(12): 2139–2145
doi: 10.1038/mt.2010.231 pmid:20978477
111 Winkler T, Cantilena A, Métais JY, Xu X, Nguyen AD, Borate B, Antosiewicz-Bourget JE, Wolfsberg TG, Thomson JA, Dunbar CE. No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells. Stem Cells 2010; 28(4): 687–694
doi: 10.1002/stem.322 pmid:20166152
112 Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011; 471(7336): 68–73
doi: 10.1038/nature09798 pmid:21289626
113 Hussein SM, Nagy K, Nagy A. Human induced pluripotent stem cells: the past, present, and future. Clin Pharmacol Ther 2011; 89(5): 741–745
doi: 10.1038/clpt.2011.37 pmid:21430659
114 Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008; 322(5903): 949–953
doi: 10.1126/science.1164270 pmid:18845712
115 Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science 2008; 322(5903): 945–949
doi: 10.1126/science.1162494 pmid:18818365
116 Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 2009; 27(3): 543–549
doi: 10.1634/stemcells.2008-1075 pmid:19096035
117 Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009; 458(7239): 771–775
doi: 10.1038/nature07864 pmid:19252477
118 Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 2010; 7(5): 618–630
doi: 10.1016/j.stem.2010.08.012 pmid:20888316
119 Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M. Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 2011; 29(1): 73–78
doi: 10.1038/nbt.1717 pmid:21151124
120 Zou J, Sweeney CL, Chou BK, Choi U, Pan J, Wang H, Dowey SN, Cheng L, Malech HL. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 2011; 117(21): 5561–5572
doi: 10.1182/blood-2010-12-328161 pmid:21411759
[1] Wei Lu,Qingzhang Zhou,Hao Yang,Hao Wang,Yexing Gu,Qi Shen,Jinglun Xue,Xiaoyan Dong,Jinzhong Chen. Gene therapy for hemophilia B mice with scAAV8-LP1-hFIX[J]. Front. Med., 2016, 10(2): 212-218.
[2] Jian XIN BM, Ze-Feng XIA MD, Kai-Xiong TAO MD, Kai-Lin CAI PhD, Gao-Xiong HAN MD, Xiao-Ming SHUAI MD, Ji-Liang WANG MD, Han-Song DU MD, Guo-Bin WANG PhD, Yan LUO MM, . Development of a magnetite-gene complex for gene transfection[J]. Front. Med., 2010, 4(2): 241-246.
[3] Xudong YU MM, Zengwu SHAO MD, Liming XIONG MD, Weiwei XU MM, Hezhong WANG MM, Huifa XU MM, . Adenovirus-mediated tissue inhibitor of metalloproteinase-3 gene transfection inhibits rabbit intervertebral disc degeneration in vivo[J]. Front. Med., 2009, 3(4): 415-420.
[4] Youguo HAO, Min ZHANG, Jinzhi XU, Bitao BU, Jiajun WEI. Construction of lentiviral vector carrying Rab9 gene and its expression in mouse brain[J]. Front Med Chin, 2009, 3(2): 141-147.
[5] XIA Xi, WANG Beibei, CAO Li, CHEN Gang, WU Peng, LU Yunping, ZHOU Jianfeng, MA Ding. Investigation of gene therapy of denovirus in immune suppression[J]. Front. Med., 2008, 2(4): 386-390.
[6] SUN Ledong, SUN Jing, ZENG Kang, MENG Fanyi, DIAO Youtao, XU Dan, HUANG Liang, ZHAO Jie, Liu Qifa. Autologous peripheral hematopoietic stem-cell transplantation in a patient with refractory pemphigus[J]. Front. Med., 2008, 2(2): 191-194.
[7] XIONG Ying, GUO Wen, LI Ting, LI Ke. Influence of Survivin-targeted siRNA on the biological features of colorectal carcinoma cells[J]. Front. Med., 2007, 1(3): 304-307.
[8] TIAN Yongji, LI Guilin, GAO Jun, WANG Renzhi, KONG Yanguo, ZHANG Zhenxing, LI Shifang, TIAN Shiqiang, DOU Wanchen, ZHANG Bo. Construction of 6HRE-GFAP-Baxα system specific for glioma gene therapy[J]. Front. Med., 2007, 1(1): 49-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed