Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2011, Vol. 5 Issue (4) : 401-413     DOI: 10.1007/s11684-011-0161-7
REVIEW |
Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region
Zhiyuan Zhang1,2()
1. Department of Oral and Maxillofacial Surgery; 2. Oral Bioengineering/Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, the Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
Download: PDF(762 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

Clinical imperatives for the reconstruction of jaw bone defects or resorbed alveolar ridge require new therapies or procedures instead of autologous/allogeneic bone grafts. Regenerative medicine, based on stem cell science and tissue engineering technology, is considered as an ideal alternative strategy for bone regeneration. In this paper, we review the current choices of cell source and strategies on directing the osteogenic differentiation of stem cells. The preclinical animal models for bone regeneration and the key translational points to clinical success in oral and maxillofacial region are also discussed. We propose comprehensive strategies based on stem cell and tissue engineering researches, allowing for clinical application in oral and maxillofacial region.

Keywords bone regeneration      animal models      translational strategies      oral and maxillofacial region     
Corresponding Authors: Zhang Zhiyuan,Email:zhzhy@omschina.org.cn   
Issue Date: 05 December 2011
URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-011-0161-7     OR     http://academic.hep.com.cn/fmd/EN/Y2011/V5/I4/401
Fig.1  Ca, Mg, and Si containing akermanite ceramic could promote proliferation and osteogenic differentiation of PDLSCs as compared with β-TCP. SEM (A, B) and EDS (C, D) analysis of these two ceramics (A, C: β-TCP; B, D: akermanite, scale bar= 10 μm). (E) MTT assay of hPDLSCs seeded on β-TCP and akermanite. (F) The ALP activity of hPDLSCs seeded on β-TCP and akermanite. Asterisk indicates significant differences <0.05.(Partial figures reprinted, with permission, from Reference 71.)
Fig.2  Schematic drawing of canine models for bone regeneration in oral and maxillofacial region: (A) Border defect model; (B) Vertical ridge augmentation model; (C) Segmental defect model; (D) Maxillary sinus augmentation model.
Fig.3  Tissue-engineered bone for canine maxillary sinus floor elevation with simultaneous implant placement: (A) 3D reconstruction for new bone volume in maxillary sinus (Scale bar= 1 mm); (B) Histological analysis of newly formed bone (Scale bar= 100 μm); (C) Histological analysis of dental implant osseointegration (Scale bar= 50 μm); (D) Sequential ?uorescent labeling analysis of bone mineralization and deposition for maxillary sinus augmentation with simultaneous dental implantation (Scale bar= 50 μm).
Fig.4  Micro-CT analysis of angiogenesis and osteogenesis in rat critical-sized calvarial defect models: (A, C) LacZ group; (B, D) HIF-1α-overexpressing group, red area indicating the blood vessels.
Fig.5  SEM photographs of microscale topography (A1) and nanoscale topography (B1) modified titanium surface (Scale bar= 1 mm). BMSCs spread on the microscale (A2) and nanoscale topography (B2) after 4 d culture (Scale bar= 50 μm). ALP staining showed osteogenic differentiation of BMSCs seeded on microscale topography (A3) and nanoscale topography (B3) modified titanium surface for 14 d (Scale bar= 500 μm).
1 He Y, Zhang ZY, Zhu HG, Qiu W, Jiang X, Guo W. Experimental study on reconstruction of segmental mandible defects using tissue engineered bone combined bone marrow stromal cells with three-dimensional tricalcium phosphate. J Craniofac Surg 2007; 18(4): 800–805
doi: 10.1097/scs.0b013e31806901f5 pmid:17667668
2 Davo R, Malevez C, Rojas J. Immediate function in the atrophic maxilla using zygoma implants: a preliminary study. J Prosthet Dent 2007; 97(6 Suppl): S44–S51
doi: 10.1016/S0022-3913(07)60007-9 pmid:17618933
3 Sj?str?m M, Sennerby L, Nilson H, Lundgren S. Reconstruction of the atrophic edentulous maxilla with free iliac crest grafts and implants: a 3-year report of a prospective clinical study. Clin Implant Dent Relat Res 2007; 9(1): 46–59
doi: 10.1111/j.1708-8208.2007.00034.x pmid:17362496
4 Taylor GI. The current status of free vascularized bone grafts. Clin Plast Surg 1983; 10(1): 185–209
pmid:6340912
5 Zhao J, Zhang Z, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Jiang X. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 2009; 45(3): 517–527
doi: 10.1016/j.bone.2009.05.026 pmid:19505603
6 Joshi A. An investigation of post-operative morbidity following chin graft surgery. Br Dent J 2004; 196(4): 215–218 , discussion 211
doi: 10.1038/sj.bdj.4810987 pmid:15039731
7 Clavero J, Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clin Implant Dent Relat Res 2003; 5(3): 154–160
doi: 10.1111/j.1708-8208.2003.tb00197.x pmid:14575631
8 Crane GM, Ishaug SL, Mikos AG. Bone tissue engineering. Nat Med 1995; 1(12): 1322–1324
doi: 10.1038/nm1295-1322 pmid:7489417
9 Hollinger JO, Winn S, Bonadio J. Options for tissue engineering to address challenges of the aging skeleton. Tissue Eng 2000; 6(4): 341–350
doi: 10.1089/107632700418065 pmid:10992431
10 Torroni A. Engineered bone grafts and bone flaps for maxillofacial defects: state of the art. J Oral Maxillofac Surg 2009; 67(5): 1121–1127
doi: 10.1016/j.joms.2008.11.020 pmid:19375027
11 Wang S, Zhang Z, Zhao J, Zhang X, Sun X, Xia L, Chang Q, Ye D, Jiang X. Vertical alveolar ridge augmentation with β-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials 2009; 30(13): 2489–2498
doi: 10.1016/j.biomaterials.2008.12.067 pmid:19147220
12 Wang S, Zhang Z, Xia L, Zhao J, Sun X, Zhang X, Ye D, Uluda? H, Jiang X. Systematic evaluation of a tissue-engineered bone for maxillary sinus augmentation in large animal canine model. Bone 2010; 46(1): 91–100
doi: 10.1016/j.bone.2009.09.008 pmid:19761881
13 Jayakumar P, Di Silvio L. Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H 2010; 224(12): 1415–1440
doi: 10.1243/09544119JEIM821 pmid:21287829
14 Kassem M, Ankersen L, Eriksen EF, Clark BF, Rattan SI. Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos Int 1997; 7(6): 514–524
doi: 10.1007/BF02652556 pmid:9604046
15 Zaidi N, Nixon AJ. Stem cell therapy in bone repair and regeneration. Ann N Y Acad Sci 2007; 1117(1): 62–72
doi: 10.1196/annals.1402.074 pmid:18056038
16 Bajada S, Mazakova I, Richardson JB, Ashammakhi N. Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med 2008; 2(4): 169–183
doi: 10.1002/term.83 pmid:18493906
17 Alwattar BJ, Schwarzkopf R, Kirsch T. Stem cells in orthopaedics and fracture healing. Bull NYU Hosp Jt Dis 2011; 69(1): 6–10
pmid:21332433
18 Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819): 154–156
doi: 10.1038/292154a0 pmid:7242681
19 Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282(5391): 1145–1147
doi: 10.1126/science.282.5391.1145 pmid:9804556
20 Polak JM, Bishop AE. Stem cells and tissue engineering: past, present, and future. Ann N Y Acad Sci 2006; 1068(1): 352–366
doi: 10.1196/annals.1346.001 pmid:16831937
21 Buttery LD, Bourne S, Xynos JD, Wood H, Hughes FJ, Hughes SP, Episkopou V, Polak JM. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng 2001; 7(1): 89–99
doi: 10.1089/107632700300003323 pmid:11224927
22 Jukes JM, van Blitterswijk CA, de Boer J. Skeletal tissue engineering using embryonic stem cells. J Tissue Eng Regen Med 2010; 4(3): 165–180
doi: 10.1002/term.234 pmid:19967745
23 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861–872
doi: 10.1016/j.cell.2007.11.019 pmid:18035408
24 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663–676
doi: 10.1016/j.cell.2006.07.024 pmid:16904174
25 Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917–1920
doi: 10.1126/science.1151526 pmid:18029452
26 Illich DJ, Demir N, Stojkovi? M, Scheer M, Rothamel D, Neugebauer J, Hescheler J, Z?ller JE. Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration. Stem Cells 2011; 29(4): 555–563
doi: 10.1002/stem.611 pmid:21308867
27 Duan X, Tu Q, Zhang J, Ye J, Sommer C, Mostoslavsky G, Kaplan D, Yang P, Chen J. Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol 2011; 226(1): 150–157
doi: 10.1002/jcp.22316 pmid:20658533
28 Ye JH, Xu YJ, Gao J, Yan SG, Zhao J, Tu Q, Zhang J, Duan XJ, Sommer CA, Mostoslavsky G, Kaplan DL, Wu YN, Zhang CP, Wang L, Chen J. Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 2011; 32(22): 5065–5076
doi: 10.1016/j.biomaterials.2011.03.053 pmid:21492931
29 Ward BB, Brown SE, Krebsbach PH. Bioengineering strategies for regeneration of craniofacial bone: a review of emerging technologies. Oral Dis 2010; 16(8): 709–716
doi: 10.1111/j.1601-0825.2010.01682.x pmid:20534013
30 Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Zhang Z. Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 2009; 30(27): 4522–4532
doi: 10.1016/j.biomaterials.2009.05.021 pmid:19501905
31 Mankani MH, Kuznetsov SA, Shannon B, Nalla RK, Ritchie RO, Qin Y, Robey PG. Canine cranial reconstruction using autologous bone marrow stromal cells. Am J Pathol 2006; 168(2): 542–550
doi: 10.2353/ajpath.2006.050407 pmid:16436668
32 Petite H, Viateau V, Bensa?d W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nat Biotechnol 2000; 18(9): 959–963
doi: 10.1038/79449 pmid:10973216
33 Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000; 49(3): 328–337
doi: 10.1002/(SICI)1097-4636(20000305)49:3&lt;328::AID-JBM5&gt;3.0.CO;2-Q pmid:10602065
34 Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, Lavroukov A, Kon E, Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 2001; 344(5): 385–386
doi: 10.1056/NEJM200102013440516 pmid:11195802
35 Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehm?ller M, Russo PA, Bolte H, Sherry E, Behrens E, Terheyden H. Growth and transplantation of a custom vascularised bone graft in a man. Lancet 2004; 364(9436): 766–770
doi: 10.1016/S0140-6736(04)16935-3 pmid:15337402
36 Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7(2): 211–228
doi: 10.1089/107632701300062859 pmid:11304456
37 Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 2005; 23(3): 412–423
doi: 10.1634/stemcells.2004-0021 pmid:15749936
38 Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 2004; 22(5): 560–567
doi: 10.1038/nbt958 pmid:15077117
39 Conejero JA, Lee JA, Parrett BM, Terry M, Wear-Maggitti K, Grant RT, Breitbart AS. Repair of palatal bone defects using osteogenically differentiated fat-derived stem cells. Plast Reconstr Surg 2006; 117(3): 857–863
doi: 10.1097/01.prs.0000204566.13979.c1 pmid:16525276
40 Yoon E, Dhar S, Chun DE, Gharibjanian NA, Evans GR. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng 2007; 13(3): 619–627
doi: 10.1089/ten.2006.0102 pmid:17518608
41 Lendeckel S, J?dicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, Hedrick MH, Berthold L, Howaldt HP. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 2004; 32(6): 370–373
doi: 10.1016/j.jcms.2004.06.002 pmid:15555520
42 Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625–13630
doi: 10.1073/pnas.240309797 pmid:11087820
43 Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T. Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant 2010Nov5. [Epub ahead of print]
doi: 10.3727/096368910X539128 pmid:21054950
44 Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807–5812
doi: 10.1073/pnas.0937635100 pmid:12716973
45 Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K, Lee JS, Shi S. SHED repair critical-size calvarial defects in mice. Oral Dis 2008; 14(5): 428–434
doi: 10.1111/j.1601-0825.2007.01396.x pmid:18938268
46 Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364(9429): 149–155
doi: 10.1016/S0140-6736(04)16627-0 pmid:15246727
47 Kato T, Hattori K, Deguchi T, Katsube Y, Matsumoto T, Ohgushi H, Numabe Y. Osteogenic potential of rat stromal cells derived from periodontal ligament. J Tissue Eng Regen Med 2011Jan12. [Epub ahead of print]
doi: 10.1002/term.379 pmid:21226080
48 He H, Yu J, Cao J, E L, Wang D, Zhang H, Liu H.Biocompatibility and osteogenic capacity of periodontal ligament stem cells on nHAC/PLA and HA/TCP scaffolds. J Biomater Sci Polym Ed 2010Jun16. [Epub ahead of print]
doi: 10.1163/092050609X12587018007767 pmid:20557694
49 Heng BC, Cao T, Stanton LW, Robson P, Olsen B. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res 2004; 19(9): 1379–1394
doi: 10.1359/JBMR.040714 pmid:15312238
50 Raisz LG, Pilbeam CC, Fall PM. Prostaglandins: mechanisms of action and regulation of production in bone. Osteoporos Int 1993; 3(Suppl 1 ): 136–140
doi: 10.1007/BF01621888 pmid:8461541
51 Weinreb M, Grosskopf A, Shir N. The anabolic effect of PGE2 in rat bone marrow cultures is mediated via the EP4 receptor subtype. Am J Physiol 1999; 276(2): E376–E383
pmid:9950799
52 Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 1992; 102(Pt 2): 341–351
pmid:1400636
53 Kelly KA, Gimble JM. 1,25-Dihydroxy vitamin D3 inhibits adipocyte differentiation and gene expression in murine bone marrow stromal cell clones and primary cultures. Endocrinology 1998; 139(5): 2622–2628
doi: 10.1210/en.139.5.2622 pmid:9564879
54 Martins A, Duarte AR, Faria S, Marques AP, Reis RL, Neves NM. Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials 2010; 31(22): 5875–5885
doi: 10.1016/j.biomaterials.2010.04.010 pmid:20452016
55 Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials 2000; 21(11): 1095–1102
doi: 10.1016/S0142-9612(99)00192-1 pmid:10817261
56 Notoya K, Nagai H, Oda T, Gotoh M, Hoshino T, Muranishi H, Taketomi S, Sohda T, Makino H. Enhancement of osteogenesis in vitro and in vivo by a novel osteoblast differentiation promoting compound, TAK-778. J Pharmacol Exp Ther 1999; 290(3): 1054–1064
pmid:10454478
57 Gotoh M, Notoya K, Ienaga Y, Kawase M, Makino H. Enhancement of osteogenesis in vitro by a novel osteoblast differentiation-promoting compound, TAK-778, partly through the expression of Msx2. Eur J Pharmacol 2002; 451(1): 19–25
doi: 10.1016/S0014-2999(02)02183-0 pmid:12223224
58 Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G. Stimulation of bone formation in vitro and in rodents by statins. Science 1999; 286(5446): 1946–1949
doi: 10.1126/science.286.5446.1946 pmid:10583956
59 Song C, Guo Z, Ma Q, Chen Z, Liu Z, Jia H, Dang G. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun 2003; 308(3): 458–462
doi: 10.1016/S0006-291X(03)01408-6 pmid:12914771
60 Pagkalos J, Cha JM, Kang Y, Heliotis M, Tsiridis E, Mantalaris A. Simvastatin induces osteogenic differentiation of murine embryonic stem cells. J Bone Miner Res 2010; 25(11): 2470–2478
doi: 10.1002/jbmr.163 pmid:20564244
61 Bulgin D, Hodzic E, Komljenovic-Blitva D. Advanced and prospective technologies for potential use in craniofacial tissues regeneration by stem cells and growth factors. J Craniofac Surg 2011; 22(1): 342–348
doi: 10.1097/SCS.0b013e3181f7e185 pmid:21239932
62 Zhang X, Zara J, Siu RK, Ting K, Soo C. The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res 2010; 89(9): 865–878
doi: 10.1177/0022034510376401 pmid:20647499
63 Behr B, Tang C, Germann G, Longaker MT, Quarto N. Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation. Stem Cells 2011; 29(2): 286–296
doi: 10.1002/stem.581 pmid:21732486
64 Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P, Szatkowski JP, Park JY, He TC. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 2003; 85-A(8): 1544–1552
pmid:12925636
65 Spinella-Jaegle S, Roman-Roman S, Faucheu C, Dunn FW, Kawai S, Galléa S, Stiot V, Blanchet AM, Courtois B, Baron R, Rawadi G. Opposite effects of bone morphogenetic protein-2 and transforming growth factor-β1 on osteoblast differentiation. Bone 2001; 29(4): 323–330
doi: 10.1016/S8756-3282(01)00580-4 pmid:11595614
66 de Jong DS, van Zoelen EJ, Bauerschmidt S, Olijve W, Steegenga WT. Microarray analysis of bone morphogenetic protein, transforming growth factor β, and activin early response genes during osteoblastic cell differentiation. J Bone Miner Res 2002; 17(12): 2119–2129
doi: 10.1359/jbmr.2002.17.12.2119 pmid:12469906
67 Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21(24): 2529–2543
doi: 10.1016/S0142-9612(00)00121-6 pmid:11071603
68 Srouji S, Kizhner T, Livne E. 3D scaffolds for bone marrow stem cell support in bone repair. Regen Med 2006; 1(4): 519–528
doi: 10.2217/17460751.1.4.519 pmid:17465846
69 Sun H, Wu C, Dai K, Chang J, Tang T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials 2006; 27(33): 5651–5657
doi: 10.1016/j.biomaterials.2006.07.027 pmid:16904740
70 Liu Q, Cen L, Yin S, Chen L, Liu G, Chang J, Cui L. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials 2008; 29(36): 4792–4799
doi: 10.1016/j.biomaterials.2008.08.039 pmid:18823660
71 Xia L, Zhang Z, Chen L, Zhang W, Zeng D, Zhang X, Chang J, Jiang X. Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and β-TCP bioceramics. Eur Cell Mater 2011; 22: 68–82 , discussion 83
pmid:21761393
72 Binulal NS, Deepthy M, Selvamurugan N, Shalumon KT, Suja S, Mony U, Jayakumar R, Nair SV. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering—response to osteogenic regulators. Tissue Eng Part A 2010; 16(2): 393–404
doi: 10.1089/ten.tea.2009.0242 pmid:19772455
73 Ripamonti U, Ma S, Reddi AH. The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix 1992; 12(3): 202–212
pmid:1328828
74 Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, Nagai N, Dohi Y, Ohgushi H. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res 1998; 39(2): 190–199
doi: 10.1002/(SICI)1097-4636(199802)39:2&lt;190::AID-JBM4&gt;3.0.CO;2-K.
75 Fischer EM, Layrolle P, Van Blitterswijk CA, De Bruijn JD. Bone formation by mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles. Tissue Eng 2003; 9(6): 1179–1188
doi: 10.1089/10763270360728080 pmid:14670105
76 Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007; 1(4): 245–260
doi: 10.1002/term.24 pmid:18038415
77 Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005; 310(5751): 1135–1138
doi: 10.1126/science.1106587 pmid:16293749
78 Wahl DA, Czernuszka JT. Collagen-hydroxyapatite composites for hard tissue repair. Eur Cell Mater 2006; 11: 43–56
pmid:16568401
79 Fukui N, Sato T, Kuboki Y, Aoki H. Bone tissue reaction of nano-hydroxyapatite/collagen composite at the early stage of implantation. Biomed Mater Eng 2008; 18(1): 25–33
pmid:18198404
80 Tare RS, Kanczler J, Aarvold A, Jones AM, Dunlop DG, Oreffo RO. Skeletal stem cells and bone regeneration: translational strategies from bench to clinic. Proc Inst Mech Eng H 2010; 224(12): 1455–1470
doi: 10.1243/09544119JEIM750 pmid:21287831
81 Zhao J, Hu J, Wang SY, Sun X, Xia L, Zhang X, Zhang Z, Jiang X. Combination of β-TCP and BMP-2 gene-modified bMSCs to heal critical size mandibular defects in rats. Oral Dis 2010; 16(1): 46–54
doi: 10.1111/j.1601-0825.2009.01602.x pmid:19619194
82 Vertenten G, Gasthuys F, Cornelissen M, Schacht E, Vlaminck L. Enhancing bone healing and regeneration: present and future perspectives in veterinary orthopaedics. Vet Comp Orthop Traumatol 2010; 23(3): 153–162
pmid:20422117
83 Kawakatsu N, Oda S, Kinoshita A, Kikuchi S, Tsuchioka H, Akizuki T, Hayashi C, Kokubo S, Ishikawa I, Izumi Y. Effect of rhBMP-2 with PLGA/gelatin sponge type (PGS) carrier on alveolar ridge augmentation in dogs. J Oral Rehabil 2008; 35(9): 647–655
doi: 10.1111/j.1365-2842.2008.01850.x pmid:18482353
84 Xia L, Xu Y, Wei J, Zeng D, Ye D, Liu C, Zhang Z, Jiang X. Maxillary sinus floor elevation using a tissue-engineered bone with rhBMP-2-loaded porous calcium phosphate cement scaffold and bone marrow stromal cells in rabbits. Cells Tissues Organs 2011Apr13. [Epub ahead of print].
doi: 10.1159/000323918 pmid:21494013
85 Xia L, Xu Y, Chang Q, Sun X, Zeng D, Zhang W, Zhang X, Zhang Z, Jiang X. Maxillary sinus floor elevation using BMP-2 and Nell-1 gene-modified bone marrow stromal cells and TCP in rabbits. Calcif Tissue Int 2011; 89(1): 53–64
doi: 10.1007/s00223-011-9493-1 pmid:21584647
86 Sun XJ, Xia LG, Chou LL, Zhong W, Zhang XL, Wang SY, Zhao J, Jiang XQ, Zhang ZY. Maxillary sinus floor elevation using a tissue engineered bone complex with BMP-2 gene modified bMSCs and a novel porous ceramic scaffold in rabbits. Arch Oral Biol 2010; 55(3): 195–202
doi: 10.1016/j.archoralbio.2010.01.006 pmid:20144455
87 Jiang XQ, Sun XJ, Lai HC, Zhao J, Wang SY, Zhang ZY. Maxillary sinus floor elevation using a tissue-engineered bone complex with β-TCP and BMP-2 gene-modified bMSCs in rabbits. Clin Oral Implants Res 2009; 20(12): 1333–1340
doi: 10.1111/j.1600-0501.2009.01755.x pmid:19709061
88 Sun XJ, Zhang ZY, Wang SY, Gittens SA, Jiang XQ, Chou LL. Maxillary sinus floor elevation using a tissue-engineered bone complex with OsteoBone and bMSCs in rabbits. Clin Oral Implants Res 2008; 19(8): 804–813
doi: 10.1111/j.1600-0501.2008.01577.x pmid:18705812
89 Wang S, Zhao J, Zhang W, Ye D, Yu W, Zhu C, Zhang X, Sun X, Yang C, Jiang X, Zhang Z. Maintenance of phenotype and function of cryopreserved bone-derived cells. Biomaterials 2011; 32(15): 3739–3749
doi: 10.1016/j.biomaterials.2011.01.020 pmid:21367449
90 Derong Z, Lian G, Jiayu L, Xiuli Z, Zhiyuan Z, Xinquan J. Anatomic and histological analysis in a goat model used for maxillary sinus floor augmentation with simultaneous implant placement. Clin Oral Implants Res 2010; 21(1): 65–70
doi: 10.1111/j.1600-0501.2009.01844.x pmid:20070749
91 Zhang D, Chu F, Yang Y, Xia L, Zeng D, Uluda? H, Zhang X, Qian Y, Jiang X. Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: an experimental study in dogs. Tissue Eng Part A 2011; 17(9-10): 1313–1325
doi: 10.1089/ten.tea.2010.0490 pmid:21226625
92 Johnson EO, Troupis T, Soucacos PN. Tissue-engineered vascularized bone grafts: basic science and clinical relevance to trauma and reconstructive microsurgery. Microsurgery 2011; 31(3): 176–182
doi: 10.1002/micr.20821 pmid:21360585
93 Carano RAD, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today 2003; 8(21): 980–989
doi: 10.1016/S1359-6446(03)02866-6 pmid:14643161
94 Fr?hlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 2008; 3(4): 254–264
doi: 10.2174/157488808786733962 pmid:19075755
95 Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 2006; 10(1): 7–19
doi: 10.1111/j.1582-4934.2006.tb00287.x pmid:16563218
96 Zou D, Zhang Z, Ye D, Tang A, Deng L, Han W, Zhao J, Wang S, Zhang W, Zhu C, Zhou J, He J, Wang Y, Xu F, Huang Y, Jiang X. Repair of critical-sized rat calvarial defects using genetically engineered bone marrow-derived mesenchymal stem cells overexpressing hypoxia-inducible factor-1α. Stem Cells 2011; 29(9): 1380–1390
pmid:21774039
97 Kneser U, Polykandriotis E, Ohnolz J, Heidner K, Grabinger L, Euler S, Amann KU, Hess A, Brune K, Greil P, Stürzl M, Horch RE. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng 2006; 12(7): 1721–1731
doi: 10.1089/ten.2006.12.1721 pmid:16889503
98 Tanaka Y, Sung KC, Tsutsumi A, Ohba S, Ueda K, Morrison WA. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg 2003; 112(6): 1636–1644
doi: 10.1097/01.PRS.0000086140.49022.AB pmid:14578795
99 Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 2009; 20(Suppl 4): 185–206
doi: 10.1111/j.1600-0501.2009.01777.x pmid:19663965
100 Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 2009; 20(Suppl 4): 172–184
doi: 10.1111/j.1600-0501.2009.01775.x pmid:19663964
101 Cho LR, Kim DG, Kim JH, Byon ES, Jeong YS, Park CJ. Bone response of Mg ion-implanted clinical implants with the plasma source ion implantation method. Clin Oral Implants Res 2010; 21(8): 848–856
pmid:20384707
102 Park JW. Increased bone apposition on a titanium oxide surface incorporating phosphate and strontium. Clin Oral Implants Res 2011; 22(2): 230–234
doi: 10.1111/j.1600-0501.2010.01974.x pmid:20546249
103 Elias CN, Meirelles L. Improving osseointegration of dental implants. Expert Rev Med Devices 2010; 7(2): 241–256
doi: 10.1586/erd.09.74 pmid:20214429
104 Liu X, Chu PK, Ding C. Surface nano-functionalization of biomaterials. Mater Sci Eng Rep 2010; 70(3-6): 275–302
doi: 10.1016/j.mser.2010.06.013
105 Gimbel M, Ashley RK, Sisodia M, Gabbay JS, Wasson KL, Heller J, Wilson L, Kawamoto HK, Bradley JP. Repair of alveolar cleft defects: reduced morbidity with bone marrow stem cells in a resorbable matrix. J Craniofac Surg 2007; 18(4): 895–901
doi: 10.1097/scs.0b013e3180a771af pmid:17667684
106 Herford AS, Cicciù M. Recombinant human bone morphogenetic protein type 2 jaw reconstruction in patients affected by giant cell tumor. J Craniofac Surg 2010; 21(6): 1970–1975
doi: 10.1097/SCS.0b013e3181f502fa pmid:21119472
107 Di Bella C, Farlie P, Penington AJ. Bone regeneration in a rabbit critical-sized skull defect using autologous adipose-derived cells. Tissue Eng Part A 2008; 14(4): 483–490
doi: 10.1089/tea.2007.0137 pmid:18370606
108 Bashutski JD, Eber RM, Kinney JS, Benavides E, Maitra S, Braun TM, Giannobile WV, McCauley LK. Teriparatide and osseous regeneration in the oral cavity. N Engl J Med 2010; 363(25): 2396–2405
doi: 10.1056/NEJMoa1005361 pmid:20950166
109 Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J. The clinical use of enriched bone marrow stem cells combined with porous β-tricalcium phosphate in posterior spinal fusion. Biomaterials 2008; 29(29): 3973–3982
doi: 10.1016/j.biomaterials.2008.06.026 pmid:18639333
110 Ueda M, Yamada Y, Kagami H, Hibi H. Injectable bone applied for ridge augmentation and dental implant placement: human progress study. Implant Dent 2008; 17(1): 82–90
doi: 10.1097/ID.0b013e31815cd591 pmid:18332761
[1] Sowmya Viswanathan, Armand Keating. Overcoming the challenges of conducting translational research in cell therapy[J]. Front Med, 2011, 5(4): 333-335.
[2] Wen-Qiang CHEN MD, Yun ZHANG MD, PhD, FACC, . Molecular mechanisms and therapeutic strategies of vulnerable atherosclerotic plaques[J]. Front. Med., 2010, 4(1): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed