Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2011, Vol. 5 Issue (4) : 372-378    https://doi.org/10.1007/s11684-011-0164-4
REVIEW
Mesenchymal stem cells hold promise for regenerative medicine
Shihua Wang, Xuebin Qu, Robert Chunhua Zhao()
Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
 Download: PDF(210 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Regenerative medicine is an emerging interdisciplinary field of research that uses several technological approaches including stem cells to repair tissues. Mesenchymal stem cells (MSCs), a type of adult stem cell, have generated a great amount of interest over the past decade in this field. Numerous studies have explored the role of MSCs in tissue repair and modulation of allogeneic immune responses. The mechanisms through which MSCs exert their therapeutic potential rely on some key properties of the cells as follows: the capacity to differentiate into osteoblasts, chondrocytes, adipocytes, cardiomyocytes, hepatocytes, endothelial, and neuronal cells; the ability to secrete multiple bioactive molecules capable of stimulating the recovery of injured cells and inhibiting inflammation; the lack of immunogenicity; and the ability to perform immunomodulatory functions. In the present review, we focus on these three aspects upon which the therapeutic effects of MSCs are mainly based. Furthermore, some pathological conditions under which the application of MSCs should be done with caution are also mentioned.

Keywords mesenchymal stem cells      differentiation      immunomodulation      regenerative medicine     
Corresponding Author(s): Zhao Robert Chunhua,Email:chunhuaz@public.tpt.tj.cn   
Issue Date: 05 December 2011
 Cite this article:   
Shihua Wang,Xuebin Qu,Robert Chunhua Zhao. Mesenchymal stem cells hold promise for regenerative medicine[J]. Front Med, 2011, 5(4): 372-378.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-011-0164-4
https://academic.hep.com.cn/fmd/EN/Y2011/V5/I4/372
TissueCell types producedReference
Term placental membranesAll embryonic germ layers, including alveolar type II cells[10]
Wharton's jelly of umbilical cordEctoderm-, mesoderm-, and endoderm-derived cells, including insulin-producing cells[11]
Amniotic fluidAll embryonic germ layers, including neuronal lineage cells secreting the neurotransmitter L-glutamate or expressing G-protein-gated inwardly rectifying potassium channels, hepatic lineage cells producing urea, and osteogenic lineage cells forming tissue-engineered bone[12]
Placenta and bone marrowAdipocytes and osteoblast-like cells (mesoderm), glucagon and insulin expressing pancreatic-like cells (endoderm), as well as cells expressing the neuronal markers neuron-specific enolase, glutamic acid decarboxylase-67 (GAD), or class III beta-tubulin, and the astrocyte marker glial fibrillary acidic protein (ectoderm)[13]
Human term placentaAll three germ layers—endoderm (liver, pancreas), mesoderm (cardiomyocyte), and ectoderm (neural cells) in vitro[14]
Placental cord bloodIn vitro—osteoblasts, chondroblasts, adipocytes, and hematopoietic and neural cells including astrocytes and neurons that express neurofilament, sodium channel protein, and various neurotransmitter phenotypes. In vivo—mesodermal and endodermal lineages demonstrated in animal models[15]
Adult bone marrowCells with visceral mesoderm, neuroectoderm, and endoderm characteristics in vitro[16]
Tab.1  Studies confirming the subtotipotent stem cell hypothesis
Disease modelDetailed informationReference
Lung injury—the thoraxes of C57BL/6 mice were exposed to 1 400 cGyMSCs injected immediately after injury were shown to differentiate into functional lung cells, such as epithelial and endothelial cells[20]
Hindlimb ischemia mouse modelMSCs differentiated in response to local cues into endothelial cells and contributed to neoangiogenesis[21]
Fibrosis formation induced by carbon tetrachloride (CCl4)MSCs engrafted into host liver, had epithelium-like morphology, and expressed albumin, although at a low frequency[22]
Lethally irradiated C57BL/6 miceFluorescence-labeled Flk + MSC of BALB/c mice (H-2Kd, white) were transplanted into lethally irradiated C57BL/6 mice (H-2Kb, black); donor cells could migrate and take residency at the skin. The recipient mice grew white hairs after approximately 40 days. Immunochemistry staining and RT-PCR demonstrated that skin tissue within the white hair regions was largely composed of donor-derived H-2Kd cells, including stem cells and committed cells. Furthermore, most skin cells cultured from white hair skin originated from the donor. Thus, these findings provide direct evidence that bone marrow-derived cells can give rise to functional skin cells and regenerate skin tissue[23]
Tab.2  Examples of MSCs used to treat diseases through differentiation
Bioactive moleculesFunctionsReference
Prostaglandin E2 Anti-proliferative mediators[24]
Interleukin-10Anti-inflammatory[25,26]
Transforming growth factor ?-1, hepatocyte growth factorSuppress T-lymphocyte proliferation[27]
Interleukin-1 receptor antagonistAnti-inflammatory[28]
Human leukocyte antigen G isoformAnti-proliferative for naive T cells[29,30]
LL-37Anti-microbial peptide and reduce inflammation[31,32]
Endothelial growth factor, basic fibroblast growth factor, placental growth factor, and monocyte chemoattractant protein-1Enhance proliferation of endothelial cells and smooth muscle cells[33,34]
Tab.3  Bioactive molecules secreted by MSCs and their functions
Fig.1  The immunomodulatory effects of MSCs both and .
1 Greenwood HL, Singer PA, Downey GP, Martin DK, Thorsteinsdóttir H, Daar AS. Regenerative medicine and the developing world. PLoS Med 2006; 3(9): e381
doi: 10.1371/journal.pmed.0030381 pmid:16968130
2 Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6(2): 230–247
doi: 10.1097/00007890-196803000-00009 pmid:5654088
3 Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315–317
doi: 10.1080/14653240600855905 pmid:16923606
4 Zhao RC, Liao LM, Han Q. Mechanisms of and perspectives on the mesenchymal stem cell in immunotherapy. J Lab Clin Med 2004; 143(5): 284–291
doi: 10.1016/j.lab.2003.11.009 pmid:15122172
5 Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6(11): 1282–1286
doi: 10.1038/81395 pmid:11062543
6 Dan YY, Riehle KJ, Lazaro C, Teoh N, Haque J, Campbell JS, Fausto N. Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci USA 2006; 103(26): 9912–9917
doi: 10.1073/pnas.0603824103 pmid:16782807
7 Fang BJ, Shi MX, Liao LM, Yang S, Liu Y, Zhao RC. Multiorgan engraftment and multilineage differentiation by human fetal bone marrow Flk1+/CD31-/CD34-/Progenitors. J Hematother Stem Cell Res 2003; 12(6): 603–613
doi: 10.1089/15258160360732632 pmid:14977470
8 Fang BJ, Liao LM, Shi MX, Yang S, Zhao RC. Multipotency of Flk1CD34 progenitors derived from human fetal bone marrow. J Lab Clin Med 2004; 143(4): 230–240
doi: 10.1016/j.lab.2003.11.008 pmid:15085082
9 Guo H, Hu Y, Liao LM,Jiang XY, Liu JW, Ma L, Ma GJ, Zhao ZG, Yang SG, Zhao RC. Postembryonic subtotipotent stem cells derived from a variety of fetal tissues have multiple differentiation potential and greatly contribute to stem cell plasticity. China J Modern Med 2002; 12(16):1–9
10 Macias MI, Grande J, Moreno A, Domínguez I, Bornstein R, Flores AI. Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. Am J Obstet Gynecol 2010; 203(5):495.e9–495.e23
pmid:20692642
11 Anzalone R, Lo Iacono M, Loria T, Di Stefano A, Giannuzzi P, Farina F, La Rocca G. Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev 2011; 7(2): 342–363
doi: 10.1007/s12015-010-9196-4 pmid:20972649
12 De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25(1): 100–106
doi: 10.1038/nbt1274 pmid:17206138
13 Battula VL, Bareiss PM, Treml S, Conrad S, Albert I, Hojak S, Abele H, Schewe B, Just L, Skutella T, Bühring HJ. Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 2007; 75(4): 279–291
doi: 10.1111/j.1432-0436.2006.00139.x pmid:17288545
14 Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells 2005; 23(10): 1549–1559
doi: 10.1634/stemcells.2004-0357 pmid:16081662
15 K?gler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Müller HW, Zanjani E, Wernet P. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200(2): 123–135
doi: 10.1084/jem.20040440 pmid:15263023
16 Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893): 41–49
doi: 10.1038/nature00870 pmid:12077603
17 Li KH, Han Q, Yan X, Liao LM, Zhao RC. Not a process of simple vicariousness, the differentiation of human adipose-derived mesenchymal stem cells to renal tubular epithelial cells plays an important role in acute kidney injury repairing. Stem Cells Dev 2010; 19(8): 1267–1275
doi: 10.1089/scd.2009.0196 pmid:19874085
18 Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefes Arch Clin Exp Ophthalmol 2010; 248(10): 1415–1422
doi: 10.1007/s00417-010-1384-z pmid:20437245
19 Liu Y, Yan X, Sun Z, Chen B, Han Q, Li J, Zhao RC. Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev 2007; 16(5): 695–706
doi: 10.1089/scd.2006.0118 pmid:17999592
20 Yan X, Liu Y, Han Q, Jia M, Liao L, Qi M, Zhao RC. Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 2007; 35(9): 1466–1475
doi: 10.1016/j.exphem.2007.05.012 pmid:17637496
21 Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 2005; 332(2): 370–379
doi: 10.1016/j.bbrc.2005.04.135 pmid:15896706
22 Fang B, Shi M, Liao L, Yang S, Liu Y, Zhao RC. Systemic infusion of FLK1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation 2004;78(1):83–88
pmid:15257043
23 Deng W, Han Q, Liao L, Li C, Ge W, Zhao Z, You S, Deng H, Murad F, Zhao RC. Engrafted bone marrow-derived flk-(1+)Flk-1+ mesenchymal stem cells regenerate skin tissue. Tissue Eng 2005; 11(1-2): 110–119
doi: 10.1089/ten.2005.11.110 pmid:15738666
24 Bouffi C, Bony C, Courties G, Jorgensen C, No?l D. IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS ONE 2010; 5(12): e14247
doi: 10.1371/journal.pone.0014247 pmid:21151872
25 Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15(1): 42–49
doi: 10.1038/nm.1905 pmid:19098906
26 Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179(3): 1855–1863
pmid:17641052
27 Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99(10): 3838–3843
doi: 10.1182/blood.V99.10.3838 pmid:11986244
28 Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 2007; 104(26): 11002–11007
doi: 10.1073/pnas.0704421104 pmid:17569781
29 Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008; 26(1): 212–222
doi: 10.1634/stemcells.2007-0554 pmid:17932417
30 Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726–736
doi: 10.1038/nri2395 pmid:19172693
31 Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, Liles WC, Stewart DJ. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med 2010; 182(8): 1047–1057
doi: 10.1164/rccm.201001-0010OC pmid:20558630
32 Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee JW, Matthay MA. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 2010; 28(12): 2229–2238
doi: 10.1002/stem.544 pmid:20945332
33 Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 2004; 109(12): 1543–1549
doi: 10.1161/01.CIR.0000124062.31102.57 pmid:15023891
34 Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004; 94(5): 678–685
doi: 10.1161/01.RES.0000118601.37875.AC pmid:14739163
35 Li J, Zhu H, Liu Y, Li Q, Lu S, Feng M, Xu Y, Huang L, Ma C, An Y, Zhao RC, Wang R, Qin C. Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macaca fascicularis. Brain Res 2010; 1334: 65–72
doi: 10.1016/j.brainres.2010.03.080 pmid:20353760
36 Lu S, Lu C, Han Q, Li J, Du Z, Liao L, Zhao RC. Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology 2011; 279(1-3): 189–195
doi: 10.1016/j.tox.2010.10.011 pmid:21040751
37 Guo M, Sun Z, Sun QY, Han Q, Yu CL, Wang DH, Qiao JH, Chen B, Sun WJ, Hu KX, Liu GX, Liu B, Zhao RC, Ai H. A modified haploidentical nonmyeloablative transplantation without T cell depletion for high-risk acute leukemia: successful engraftment and mild GVHD. Biol Blood Marrow Transplant 2009; 15(8): 930–937
doi: 10.1016/j.bbmt.2009.04.006 pmid:19589482
38 Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105(4): 1815–1822
doi: 10.1182/blood-2004-04-1559 pmid:15494428
39 Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30(1): 42–48
doi: 10.1016/S0301-472X(01)00769-X pmid:11823036
40 Shi D, Liao L, Zhang B, Liu R, Dou X, Li J, Zhu X, Yu L, Chen D, Zhao RC. Human adipose tissue-derived mesenchymal stem cells facilitate the immunosuppressive effect of cyclosporin A on T lymphocytes through Jagged-1-mediated inhibition of NF-κB signaling. Exp Hematol 2011; 39(2): 214–224, e1
doi: 10.1016/j.exphem.2010.10.009 pmid:21078360
41 Zhang W, Ge W, Li C, You S, Liao L, Han Q, Deng W, Zhao RC. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev 2004; 13(3): 263–271
doi: 10.1089/154732804323099190 pmid:15186722
42 Chen L, Zhang W, Yue H, Han Q, Chen B, Shi M, Li J, Li B, You S, Shi Y, Zhao RC. Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+ cells. Stem Cells Dev 2007; 16(5): 719–732
doi: 10.1089/scd.2007.0065 pmid:17999594
43 Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, Zhu X, Lu C, Liang W, Liao L, Zenke M, Zhao RC. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood 2009; 113(1): 46–57
doi: 10.1182/blood-2008-04-154138 pmid:18832657
44 Deng W, Han Q, Liao L, You S, Deng H, Zhao RC. Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol 2005; 24(7): 458–463
doi: 10.1089/dna.2005.24.458 pmid:16008514
45 Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L, Vanbellinghen JF, Hafraoui K, Lejeune M, Gothot A, Fillet G, Beguin Y. Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biol Blood Marrow Transplant 2010; 16(6): 838–847
doi: 10.1016/j.bbmt.2010.01.011 pmid:20109568
46 Zhou H, Guo M, Bian C, Sun Z, Yang Z, Zeng Y, Ai H, Zhao RC. Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant 2010; 16(3): 403–412
doi: 10.1016/j.bbmt.2009.11.006 pmid:19925878
47 Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162): 557–563
doi: 10.1038/nature06188 pmid:17914389
48 Chen B, Hu J, Liao L, Sun Z, Han Q, Song Z, Zhao RC. Flk-1+ mesenchymal stem cells aggravate collagen-induced arthritis by up-regulating interleukin-6. Clin Exp Immunol 2010; 159(3): 292–302
doi: 10.1111/j.1365-2249.2009.04069.x pmid:20002448
49 Yang Z, Bian C, Zhou H, Huang S, Wang S, Liao L, Zhao RC. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev 2011; 20(2): 259–267
doi: 10.1089/scd.2010.0072 pmid:20486779
[1] Yufeng Zhao, Xueyun Yu, Xinyu Cao, Lin Luo, Liyun He, Shusong Mao, Li Ma, Peijing Rong, Yuxue Zhao, Guozheng Li, Baoyan Liu. Cluster analysis for syndromes of real-world coronary heart disease with angina pectoris[J]. Front. Med., 2018, 12(5): 566-571.
[2] Xiao-Dong Yang, Shao-Cong Sun. Deubiquitinases as pivotal regulators of T cell functions[J]. Front. Med., 2018, 12(4): 451-462.
[3] Isabel Andia, Michele Abate. Platelet-rich plasma: combinational treatment modalities for musculoskeletal conditions[J]. Front. Med., 2018, 12(2): 139-152.
[4] Xiaoling Wang,Yun Tan,Yizhen Li,Jingming Li,Wen Jin,Kankan Wang. Repression of CDKN2C caused by PML/RARα binding promotes the proliferation and differentiation block in acute promyelocytic leukemia[J]. Front. Med., 2016, 10(4): 420-429.
[5] Nan Ding,Jiafei Xi,Yanming Li,Xiaoyan Xie,Jian Shi,Zhaojun Zhang,Yanhua Li,Fang Fang,Sihan Wang,Wen Yue,Xuetao Pei,Xiangdong Fang. Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation[J]. Front. Med., 2016, 10(3): 297-310.
[6] Xiaoyu Wang,Yuxuan Gao,Haigang Shi,Na Liu,Wei Zhang,Hongbo Li. Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells[J]. Front. Med., 2016, 10(3): 286-296.
[7] Aining Xu,Lin Cheng. Chemical transdifferentiation: closer to regenerative medicine[J]. Front. Med., 2016, 10(2): 152-165.
[8] Yingchen Li,Guoheng Hu,Qilai Cheng. Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges[J]. Front. Med., 2015, 9(1): 20-29.
[9] Guangqing Wang, Zhaofan Xia. Monocyte subsets and their differentiation tendency after burn injury[J]. Front Med, 2013, 7(4): 397-400.
[10] Siming Yang, Kui Ma, Changjiang Feng, Yan Wu, Yao Wang, Sha Huang, Xiaobing Fu. Capacity of human umbilical cord-derived mesenchymal stem cells to differentiate into sweat gland-like cells: a preclinical study[J]. Front Med, 2013, 7(3): 345-353.
[11] Rong Zhang, Di Wang, Zhuying Xia, Chao Chen, Peng Cheng, Hui Xie, Xianghang Luo. The role of microRNAs in adipocyte differentiation[J]. Front Med, 2013, 7(2): 223-230.
[12] Siming Yang, Sha Huang, Changjiang Feng, Xiaobing Fu. Umbilical cord-derived mesenchymal stem cells: strategies, challenges, and potential for cutaneous regeneration[J]. Front Med, 2012, 6(1): 41-47.
[13] Zhuying Xia, Chao Chen, Peng Chen, Hui Xie, Xianghang Luo. MicroRNAs and their roles in osteoclast differentiation[J]. Front Med, 2011, 5(4): 414-419.
[14] Li LI, Jianxin JIANG. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms[J]. Front Med, 2011, 5(1): 33-39.
[15] Jinzheng LI, Min LI, Bolin NIU, Jianping GONG. Therapeutic potential of stem cell in liver regeneration[J]. Front Med, 2011, 5(1): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed