Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2012, Vol. 6 Issue (1) : 35-40    https://doi.org/10.1007/s11684-012-0171-0
REVIEW
Nicotinic acetylcholine receptor α7 subunit: a novel therapeutic target for cardiovascular diseases
Chong Liu, Dingfeng Su()
Department of Pharmacology, Second Military Medical University, Shanghai 200433, China
 Download: PDF(163 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Inflammation is important in the pathogenesis and development of cardiovascular diseases. Recent studies show that vagus nerve stimulation inhibits pro-inflammatory cytokine production through “the cholinergic anti-inflammatory pathway,” more specifically via the α7 nicotinic acetylcholine receptor (α7nAChR). In the current study, the role of the cholinergic anti-inflammatory pathway during septic shock, hypertension, and myocardial infarction is reviewed, and its possible clinical implications in cardiovascular diseases are discussed.

Keywords α7 nicotinic acetylcholine receptor      cardiovascular diseases      baroreflex sensitivity     
Corresponding Author(s): Su Dingfeng,Email:dfsu2008@gmail.com   
Issue Date: 05 March 2012
 Cite this article:   
Chong Liu,Dingfeng Su. Nicotinic acetylcholine receptor α7 subunit: a novel therapeutic target for cardiovascular diseases[J]. Front Med, 2012, 6(1): 35-40.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-012-0171-0
https://academic.hep.com.cn/fmd/EN/Y2012/V6/I1/35
Fig.1  Schematic illustration of a working hypothesis for the role of α7nAChR in cardiovascular disease and pharmacological and non-pharmacological therapies. The pathway itself is shown in blue boxes, whereas current and proposed therapeutic strategies that interact with this pathway are shown in yellow boxes.
1 Matsukawa A. STAT proteins in innate immunity during sepsis: lessons from gene knockout mice. Acta Med Okayama 2007; 61(5): 239-245
pmid:17971840
2 Gómez-Guerrero C, Mallavia B, Egido J. Targeting inflammation in cardiovascular diseases:still a neglected field? Cardiovasc Ther 2011Apr1.[Epub ahead of print]
doi: 10.1111/j.1755-5922
3 Rogers LK, Velten M. Maternal inflammation, growth retardation, and preterm birth: insights into adult cardiovascular disease. Life Sci 2011; 89(13-14): 417-421
doi: 10.1016/j.lfs.2011.07.017 pmid:21821056
4 Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci 2007; 80(24-25): 2325-2329
doi: 10.1016/j.lfs.2007.01.002 pmid:17289087
5 Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405(6785): 458-462
doi: 10.1038/35013070 pmid:10839541
6 Trenchard D, Gardner D, Guz A. Role of pulmonary vagal afferent nerve fibres in the development of rapid shallow breathing in lung inflammation. Clin Sci 1972; 42(3): 251-263 5013871
7 Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 2003; 421(6921): 384-388
doi: 10.1038/nature01339 pmid:12508119
8 de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 2007; 151(7): 915-929
doi: 10.1038/sj.bjp.0707264 pmid:17502850
9 Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 2003; 9(5-8): 125-134
pmid:14571320
10 de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den Wijngaard RM, Boeckxstaens GE. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 2005; 6(8): 844-851
doi: 10.1038/ni1229 pmid:16025117
11 Samavati L, Rastogi R, Du W, Hüttemann M, Fite A, Franchi L. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 2009; 46(8-9): 1867-1877
doi: 10.1016/j.molimm.2009.02.018 pmid:19299019
12 Lee C, Lim HK, Sakong J, Lee YS, Kim JR, Baek SH. Janus kinase-signal transducer and activator of transcription mediates phosphatidic acid-induced interleukin (IL)-1beta and IL-6 production. Mol Pharmacol 2006; 69(3): 1041-1047
pmid:16354768
13 Thayer JF, Lane RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 2007; 74(2): 224-242
doi: 10.1016/j.biopsycho.2005.11.013 pmid:17182165
14 Lo M, Su DF, Julien C, Cerutti C, Vincent M, Sassard J. Influence of hypertension and age on the sympathetic and parasympathetic components of cardiac baroreflex in the conscious rat. Arch Mal Coeur Vaiss 1988; 81(Spec No): 113-117 (in French)
pmid:2847671
15 Li DJ, Evans RG, Yang ZW, Song SW, Wang P, Ma XJ, Liu C, Xi T, Su DF, Shen FM. Dysfunction of cholinergic anti-inflammatory pathway in hypertensive rats. Hypertension 2011; 57(2): 298-307
doi: 10.1161/HYPERTENSIONAHA.110.160077 pmid:21173343
16 Li DL, Liu BH, Sun L, Zhao M, He X, Yu XJ, Zang WJ. Alterations of muscarinic acetylcholine receptors-2, 4 and α7-nicotinic acetylcholine receptor expression after ischaemia/reperfusion in the rat isolated heart. Clin Exp Pharmacol Physiol 2010; 37(12): 1114-1119
doi: 10.1111/j.1440-1681.2010.05448.x pmid:20880185
17 Fu YJ, Shu H, Miao CY, Wang MW, Su DF. Restoration of baroreflex function by ketanserin is not blood pressure dependent in conscious freely moving rats. J Hypertens 2004; 22(6): 1165-1172
doi: 10.1097/00004872-200406000-00018 pmid:15167452
18 Ashida T, Ono C, Sugiyama T. Effects of short-term hypocaloric diet on sympatho-vagal interaction assessed by spectral analysis of heart rate and blood pressure variability during stress tests in obese hypertensive patients. Hypertens Res 2007; 30(12): 1199-1203
doi: 10.1291/hypres.30.1199 pmid:18344625
19 Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin Exp Pharmacol Physiol 2007; 34(4): 377-384
doi: 10.1111/j.1440-1681.2007.04590.x pmid:17324153
20 Bernardi L, Porta C, Spicuzza L, Bellwon J, Spadacini G, Frey AW, Yeung LY, Sanderson JE, Pedretti R, Tramarin R. Slow breathing increases arterial baroreflex sensitivity in patients with chronic heart failure. Circulation 2002; 105(2): 143-145
doi: 10.1161/hc0202.103311 pmid:11790690
21 Joshi N, Taylor J, Bisognano JD. Implantable device therapy for the treatment of resistant hypertension. J Cardiovasc Transl Res 2009; 2(2): 150-153
doi: 10.1007/s12265-009-9093-x pmid:20559981
22 Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ. Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 2002; 195(6): 781-788
doi: 10.1084/jem.20011714 pmid:11901203
23 Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, Tracey KJ. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci 2000; 85(1-3): 141-147
doi: 10.1016/S1566-0702(00)00233-2 pmid:11189021
24 Hofer S, Eisenbach C, Lukic IK, Schneider L, Bode K, Brueckmann M, Mautner S, Wente MN, Encke J, Werner J, Dalpke AH, Stremmel W, Nawroth PP, Martin E, Krammer PH, Bierhaus A, Weigand MA. Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit Care Med 2008; 36(2): 404-408
doi: 10.1097/01.CCM.0B013E31816208B3 pmid:18091537
25 Peter C, Schmidt K, Hofer S, Stephan M, Martin E, Weigand MA, Walther A. Effects of physostigmine on microcirculatory alterations during experimental endotoxemia. Shock 2010; 33(4): 405-411
doi: 10.1097/SHK.0b013e3181b77e82 pmid:20407407
26 van Westerloo DJ, Giebelen IA, Meijers JC, Daalhuisen J, de Vos AF, Levi M, van der Poll T. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. J Thromb Haemost 2006; 4(9): 1997-2002
doi: 10.1111/j.1538-7836.2006.02112.x pmid:16805873
27 Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, Ashok M, Goldstein RS, Chavan S, Pavlov VA, Metz CN, Yang H, Czura CJ, Wang H, Tracey KJ. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 2007; 35(12): 2762-2768
doi: 10.1097/01.CCM.0000288102.15975.BA pmid:17901837
28 Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Wang H, Metz C, Miller EJ, Tracey KJ, Ulloa L. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 2004; 10(11): 1216-1221
doi: 10.1038/nm1124 pmid:15502843
30 Liu C, Shen FM, Le YY, Kong Y, Liu X, Cai GJ, Chen AF, Su DF. Antishock effect of anisodamine involves a novel pathway for activatingα7 nicotinic acetylcholine receptor. Crit Care Med 2009; 37(2): 634-641
doi: 10.1097/CCM.0b013e31819598f5 pmid:19114896
31 Shen FM, Guan YF, Xie HH, Su DF. Arterial baroreflex function determines the survival time in lipopolysaccharide-induced shock in rats. Shock 2004; 21(6): 556-560
doi: 10.1097/01.shk.0000126647.51109.5c pmid:15167685
32 Shi KY, Shen FM, Liu AJ, Chu ZX, Cao YL, Su DF. The survival time post-cecal ligation and puncture in sinoaortic denervated rats. J Cardiovasc Pharmacol 2007; 50(2): 162-167
doi: 10.1097/FJC.0b013e31805c942d pmid:17703132
33 Liu C, Zhang GF, Song SW, Cai GJ, Liu WH, Miao CY, Su DF. Effects of ketanserin on endotoxic shock and baroreflex function in rodents. J Infect Dis 2011 ;204(10):1605-1612
pmid:21917879
34 Luft FC, Mervaala E, Müller DN, Gross V, Schmidt F, Park JK, Schmitz C, Lippoldt A, Breu V, Dechend R, Dragun D, Schneider W, Ganten D, Haller H. Hypertension-induced end-organ damage : a new transgenic approach to an old problem. Hypertension 1999; 33(1 Pt 2): 212-218
pmid:9931107
35 Bautista LE. Inflammation, endothelial dysfunction, and the risk of high blood pressure: epidemiologic and biological evidence. J Hum Hypertens 2003; 17(4): 223-230
doi: 10.1038/sj.jhh.1001537 pmid:12692566
36 Bernik TR, Friedman SG, Ochani M, DiRaimo R, Susarla S, Czura CJ, Tracey KJ. Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion. J Vasc Surg 2002; 36(6): 1231-1236
doi: 10.1067/mva.2002.129643 pmid:12469056
37 Mioni C, Bazzani C, Giuliani D, Altavilla D, Leone S, Ferrari A, Minutoli L, Bitto A, Marini H, Zaffe D, Botticelli AR, Iannone A, Tomasi A, Bigiani A, Bertolini A, Squadrito F, Guarini S. Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Crit Care Med 2005; 33(11): 2621-2628
doi: 10.1097/01.CCM.0000186762.05301.13 pmid:16276189
38 Schwartz PJ, Vanoli E, Stramba-Badiale M, De Ferrari GM, Billman GE, Foreman RD. Autonomic mechanisms and sudden death:new insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation 1988; 78(4): 969-979
doi: 10.1161/01.CIR.78.4.969 pmid:3168199
39 Billman GE, Schwartz PJ, Stone HL. Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation 1982; 66(4): 874-880
doi: 10.1161/01.CIR.66.4.874 pmid:7116603
40 La Rovere MT, Specchia G, Mortara A, Schwartz PJ. Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction: a prospective study. Circulation 1988; 78(4): 816-824
doi: 10.1161/01.CIR.78.4.816 pmid:3168190
41 La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 1998; 351(9101): 478-484
doi: 10.1016/S0140-6736(97)11144-8 pmid:9482439
42 La Rovere MT, Pinna GD, Hohnloser SH, Marcus FI, Mortara A, Nohara R, Bigger JT Jr, Camm AJ, Schwartz PJ; the Autonomic Tone and Reflexes After Myocardial Infarction (ATRAMI) Investigators. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation 2001; 103(16): 2072-2077
pmid:11319197
43 Billman GE, Schwartz PJ, Stone HL. The effects of daily exercise on susceptibility to sudden cardiac death. Circulation 1984; 69(6): 1182-1189
doi: 10.1161/01.CIR.69.6.1182 pmid:6713619
44 La Rovere MT, Bersano C, Gnemmi M, Specchia G, Schwartz PJ. Exercise-induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. Circulation 2002; 106(8): 945-949
doi: 10.1161/01.CIR.0000027565.12764.E1 pmid:12186798
45 Jorge L, Rodrigues B, Rosa KT, Malfitano C, Loureiro TC, Medeiros A, Curi R, Brum PC, Lacchini S, Montano N, De Angelis K, Irigoyen MC. Cardiac and peripheral adjustments induced by early exercise training intervention were associated with autonomic improvement in infarcted rats: role in functional capacity and mortality. Eur Heart J 2011; 32(7): 904-912
doi: 10.1093/eurheartj/ehq244 pmid:20675661
46 Gao L, Schultz HD, Patel KP, Zucker IH, Wang W. Augmented input from cardiac sympathetic afferents inhibits baroreflex in rats with heart failure. Hypertension 2005; 45(6): 1173-1181
doi: 10.1161/01.HYP.0000168056.66981.c2 pmid:15897358
47 Minisi AJ, Nashed TB, Quinn MS. Regional left ventricular deafferentation increases baroreflex sensitivity following myocardial infarction. Cardiovasc Res 2003; 58(1): 136-141
doi: 10.1016/S0008-6363(02)00860-X pmid:12667954
48 Zhang C, Chen H, Xie HH, Shu H, Yuan WJ, Su DF. Inflammation is involved in the organ damage induced by sinoaortic denervation in rats. J Hypertens 2003; 21(11): 2141-2148
doi: 10.1097/00004872-200311000-00024 pmid:14597858
49 Yu JG, Song SW, Shu H, Fan SJ, Liu AJ, Liu C, Guo W, Guo JM, Miao CY, Su DF. Baroreflex deficiency hampers angiogenesis after myocardial infarction via acetylcholine-α7-nicotinic ACh receptor in rats. Eur Heart J 2011August17. [Epub ahead of print]
doi: 10.1093/eurheartj/ehr299
50 Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 2004; 109(1): 120-124
doi: 10.1161/01.CIR.0000105721.71640.DA pmid:14662714
51 Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, Campana C, Revera M, Ajmone-Marsan N, Tavazzi L, Odero A. Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail 2008; 10(9): 884-891
doi: 10.1016/j.ejheart.2008.07.016 pmid:18760668
52 Katare RG, Ando M, Kakinuma Y, Arikawa M, Yamasaki F, Sato T. Differential regulation of TNF receptors by vagal nerve stimulation protects heart against acute ischemic injury. J Mol Cell Cardiol 2010; 49(2): 234-244
doi: 10.1016/j.yjmcc.2010.03.007 pmid:20302876
53 Kong SS, Liu JJ, Hwang TC, Yu XJ, Lu Y, Zang WJ. Tumour necrosis factor-α and its receptors in the beneficial effects of vagal stimulation after myocardial infarction in rats. Clin Exp Pharmacol Physiol 2011; 38(5): 300-306
doi: 10.1111/j.1440-1681.2011.05505.x pmid:21362018
[1] Jun-Jie XIAO MD, Yi-Han CHEN MD, PhD, . Prevalence of cardiovascular diseases in China[J]. Front. Med., 2010, 4(1): 16-20.
[2] TANG Dale. Crk-associated substrate, vascular smooth muscle and hypertension[J]. Front. Med., 2008, 2(4): 323-331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed