Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2012, Vol. 6 Issue (2) : 165-172     DOI: 10.1007/s11684-012-0196-4
REVIEW |
Particle therapy for cancers: a new weapon in radiation therapy
Guo-Liang Jiang()
Department of Radiation Oncology, Fudan University Shanghai Cancer Center,Shanghai 200032, China
Download: PDF(195 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

Particle irradiation started to draw attention in the past decade and has now become a hotspot in the radiation oncology community. This article reviews the most advanced developments in particle irradiation, focusing on the characteristics of proton and carbon ions in radiation physics and radiobiology. The Bragg peak of physical dose distribution causes proton and carbon beams to optimally meet the requirement for cancer irradiation because the Bragg peak permits the accurate concentration of the dose on the tumor, thus sparing the adjacent normal tissues. Moreover, carbon ion has more radiobiological benefits than photon and proton beams. These benefits include stronger sterilization effects on intrinsic radio-resistant tumors and more effective killing of hypoxic, G0, and S phase cells. Compared with the most advanced radiation techniques using photon, such as three-dimensional conformal radiation therapy and intensity-modulated radiation therapy, proton therapy has yielded more promising outcomes in local control and survival for head and neck cancers, prostate carcinoma, and pediatric cancers. Carbon therapy in Japan showed even more promising results than proton therapy. The local controls and overall survivals were as good as that treated by surgery in early stages of non-small cell lung cancer, hepatocellular carcinoma, prostate carcinoma, and head and neck cancers, especially for such highly resistant tumors as melanoma. The non-invasive nature of particle therapy affords more patients with chances to receive and benefit from treatment. Particle therapy is gradually getting attention from the oncology community. However, the cost of particle therapy facilities has limited the worldwide use of this technology.

Keywords radiation therapy      particle therapy      proton      carbon      cancer     
Corresponding Authors: Jiang Guo-Liang,Email:jianggl@shca.org.cn   
Issue Date: 05 June 2012
URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-012-0196-4     OR     http://academic.hep.com.cn/fmd/EN/Y2012/V6/I2/165
Fig.1  Physical dose distributions of photon, proton and carbon beams. Irradiation dose to skin is taken as 100%. There is a tumor located 10 cm to 16 cm beneath the skin.
Fig.2  Cell survival curves after X-ray and “Bragg peak” irradiation of carbon ion (illustration). Curves with hollow circles (oxia), squares (chronic hypoxia), and triangles (acute hypoxia) are irradiated by X-ray, and those with solid circles, squares, and triangles are irradiated by carbon beam.
1 Slater JM, Archambeau JO, Miller DW, Notarus MI, Preston W, Slater JD. The proton treatment center at Loma Linda University Medical Center: rationale for and description of its development. Int J Radiat Oncol Biol Phys 1992; 22(2): 383-389
doi: 10.1016/0360-3016(92)90058-P pmid:1740396
2 Tsujii T, Kamada T, Baba M, Tsuji H, Kato H, Kato S, Yamada S, Yasuda S, Yanagi T, Kato H, Hara R, Yamamoto N, Mizoe J. Hirotoshi Kato, Shingo Kato, Shigeru Yamada, Shigeo Yasuda, Yanagi T, Kato H, Hara R, Yamamoto N, Mizoe J. Clinical advantages of carbon-ion radiotherapy. N J Phys 2008; 10(7): 075009
doi: 10.1088/1367-2630/10/7/075009
3 Suit HD, Chu W. History of charged particle radiotherapy. In: DeLaney TF, Kooy HM. Proton and Charged Particle Radiotherapy . Wolter Kluwer, Lippincoot Williams and Wilkins, 2008:1-7
4 Chang JY, Zhang X, Wang X, Kang Y, Riley B, Bilton S, Mohan R, Komaki R, Cox JD. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2006; 65(4): 1087-1096
doi: 10.1016/j.ijrobp.2006.01.052 pmid:16682145
5 Gerwech L, Paganetti H. Radiobiology of charged particles. In: DeLaney TF,Kooy HM. Proton and Charged Particle Radiotherapy . Wolter Kluwer, Lippincoot Williams and Wilkins, 2008:8-17
6 Fokas E, Kraft G, An H, Engenhart-Cabillic R.Ion beam radiobiology and cancer: time to update ourselves. Biochimica et Biophysica Acta 2009;1796:216-229
7 Allen C, Borak TB, Tsujii H, Nickoloff JA. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy. Mutat Res 2011; 711(1-2): 150-157
doi: 10.1016/j.mrfmmm.2011.02.012 pmid:21376738
8 Joiner MC. Linear energy transfer and relative biological effectiveness. In: Joiner M, van der Kogel A. Basic clinical radiobiology .4th ed. Hodder Arnold , 2009:168-177
9 Bush DA, Slater JD, Shin BB, Cheek G, Miller DW, Slater JM. Hypofractionated proton beam radiotherapy for stage I lung cancer. Chest 2004; 126(4): 1198-1203
doi: 10.1378/chest.126.4.1198 pmid:15486383
10 Nihei K, Ogino T, Ishikura S, Nishimura H. High-dose proton beam therapy for Stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2006; 65(1): 107-111
doi: 10.1016/j.ijrobp.2005.10.031 pmid:16458447
11 Iwata H, Murakami M, Demizu Y, Miyawaki D, Terashima K, Niwa Y, Mima M, Akagi T, Hishikawa Y, Shibamoto Y. High-dose proton therapy and carbon-ion therapy for stage I non-small cell lung cancer. Cancer 2010; 116(10): 2476-2485
pmid:20225229
12 Nakayama H, Satoh H, Sugahara S, Kurishima K, Tsuboi K, Sakurai H, Ishikawa S, Tokuuye K. Proton beam therapy of Stage II and III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2011;81(4):979-984
doi: 10.1016/j.ijrobp.2010.06.024 pmid:20888140
13 Sejpal S, Komaki R, Tsao A, Chang JY, Liao Z, Wei X, Allen PK, Lu C, Gillin M, Cox JD. Early findings on toxicity of proton beam therapy with concurrent chemotherapy for non-small cell lung cancer. Cancer 2011; 117(13): 3004-3013
doi: 10.1002/cncr.25848 pmid:21264827
14 Slater JD, Yonemoto LT, Rossi CJ Jr, Reyes-Molyneux NJ, Bush DA, Antoine JE, Loredo LN, Schulte RW, Teichman SL, Slater JM. Conformal proton therapy for prostate carcinoma. Int J Radiat Oncol Biol Phys 1998; 42(2): 299-304
doi: 10.1016/S0360-3016(98)00225-9 pmid:9788407
15 Slater JD, Rossi CJ Jr, Yonemoto LT, Bush DA, Jabola BR, Levy RP, Grove RI, Preston W, Slater JM. Proton therapy for prostate cancer: the initial Loma Linda University experience. Int J Radiat Oncol Biol Phys 2004; 59(2): 348-352
doi: 10.1016/j.ijrobp.2003.10.011 pmid:15145147
16 Igaki H, Tokuuye K, Okumura T, Sugahara S, Kagei K, Hata M, Ohara K, Hashimoto T, Tsuboi K, Takano S, Matsumura A, Akine Y. Clinical results of proton beam therapy for skull base chordoma. Int J Radiat Oncol Biol Phys 2004; 60(4): 1120-1126
doi: 10.1016/j.ijrobp.2004.05.064 pmid:15519783
17 Kawashima M, Furuse J, Nishio T, Konishi M, Ishii H, Kinoshita T, Nagase M, Nihei K, Ogino T. Phase II study of radiotherapy employing proton beam for hepatocellular carcinoma. J Clin Oncol 2005; 23(9): 1839-1846
doi: 10.1200/JCO.2005.00.620 pmid:15774777
18 Chiba T, Tokuuye K, Matsuzaki Y, Sugahara S, Chuganji Y, Kagei K, Shoda J, Hata M, Abei M, Igaki H, Tanaka N, Akine Y. Proton beam therapy for hepatocellular carcinoma: a retrospective review of 162 patients. Clin Cancer Res 2005; 11(10): 3799-3805
doi: 10.1158/1078-0432.CCR-04-1350 pmid:15897579
19 Carr BI, Nagalla S. Medical therapy for HCC. In: Carr BI. Hepatocellular Carcinoma . 2 ed. New York: Humana Press, 2009:551-554
20 Proceedings of Int Sym Heavy Ion Therapy. Jan8-9, 2011, Tokyo, Japan
21 Gorenstein LA, Sonett JR. The surgical management of stage I and stage II lung cancer. Surg Oncol Clin N Am 2011; 20(4): 701-720
doi: 10.1016/j.soc.2011.07.009 pmid:21986267
22 Miyamoto T, Baba M, Yamamoto N, Koto M, Sugawara T, Yashiro T, Kadono K, Ezawa H, Tsujii H, Mizoe JE, Yoshikawa K, Kandatsu S, Fujisawa T; Working Group for Lung Cancer.Curative treatment of Stage I non-small-cell lung cancer with carbon ion beams using a hypofractionated regimen. Int J Radiat Oncol Biol Phys 2007; 67(3): 750-758
doi: 10.1016/j.ijrobp.2006.10.006 pmid:17293232
23 Miyamoto T, Baba M, Sugane T, Nakajima M, Yashiro T, Kagei K, Hirasawa N, Sugawara T, Yamamoto N, Koto M, Ezawa H, Kadono K, Tsujii H, Mizoe JE, Yoshikawa K, Kandatsu S, Fujisawa T; Working Group for Lung Cancer. Carbon ion radiotherapy for stage I non-small cell lung cancer using a regimen of four fractions during 1 week. J Thorac Oncol 2007; 2(10): 916-926
doi: 10.1097/JTO.0b013e3181560a68 pmid:17909354
24 Earl TM, Chapman WC. Conventional surgical treatment ofβhepatocellular carcinoma. Clin Liver Dis 2011; 15(2): 353-370, vii-x
doi: 10.1016/j.cld.2011.03.008 pmid:21689618
25 Kato H, Tsujii H, Miyamoto T, Mizoe JE, Kamada T, Tsuji H, Yamada S, Kandatsu S, Yoshikawa K, Obata T, Ezawa H, Morita S, Tomizawa M, Morimoto N, Fujita J, Ohto M; Liver Cancer Working Group. Results of the first prospective study of carbon ion radiotherapy for hepatocellular carcinoma with liver cirrhosis. Int J Radiat Oncol Biol Phys 2004; 59(5): 14681476
doi: 10.1016/j.ijrobp.2004.01.032 pmid:15275734
26 Tsujii H, Mizoe J, Kamada T, Baba M, Tsuji H, Kato H, Kato S, Yamada S, Yasuda S, Ohno T, Yanagi T, Imai R, Kagei K, Hara R, Hasegawa A, Nakajima M, Sugane N, Tamaki N, Takagi R, Kandatsu S, Yoshikawa K, Kishimoto R, Miyamoto T. Clinical results of carbon ion radiotherapy at NIRS. J Radiat Res (Tokyo) 2007; 48 (Suppl A):A1A13
27 Mizoe JE, Tsujii H, Kamada T, Matsuoka Y, Tsuji H, Osaka Y, Hasegawa A, Yamamoto N, Ebihara S, Konno A. Dose escalation study of carbon ion radiotherapy for locally advanced head-and-neck cancer. Int J Radiat Oncol Biol Phys 2004; 60(2): 358364
doi: 10.1016/j.ijrobp.2004.02.067 pmid:15380567
28 Schulz-Ertner D, Karger CP, Feuerhake A, Nikoghosyan A, Combs SE, J?kel O, Edler L, Scholz M, Debus J. Effectiveness of carbon ion radiotherapy in the treatment of skull-base chordomas. Int J Radiat Oncol Biol Phys 2007; 68(2): 449457
doi: 10.1016/j.ijrobp.2006.12.059 pmid:17363188
29 Imai R, Kamada T, Tsuji H, Yanagi T, Baba M, Miyamoto T, Kato S, Kandatsu S, Mizoe JE, Tsujii H, Tatezaki S. Carbon ion radiotherapy for unresectable sacral chordomas. Clin Cancer Res 2004; 10(17): 57415746
doi: 10.1158/1078-0432.CCR-04-0301 pmid:15355901
30 Kamada T, Tsujii H, Tsuji H, Yanagi T, Mizoe JE, Miyamoto T, Kato H, Yamada S, Morita S, Yoshikawa K, Kandatsu S, Tateishi A. Efficacy and safety of carbon ion radiotherapy in bone and soft tissue sarcomas. J Clin Oncol 2002; 20(22): 44664471
doi: 10.1200/JCO.2002.10.050 pmid:12431970
31 Brada M, Pijls-Johannesma M, De Ruysscher D. Current clinical evidence for proton therapy. Cancer J 2009; 15(4): 319324
doi: 10.1097/PPO.0b013e3181b6127c pmid:19672149
[1] Yiming Ma,Ting Xiao,Quan Xu,Xinxin Shao,Hongying Wang. iTRAQ-based quantitative analysis of cancer-derived secretory proteome reveals TPM2 as a potential diagnostic biomarker of colorectal cancer[J]. Front. Med., 2016, 10(3): 278-285.
[2] Xinsen Xu,Kai Qu,Qing Pang,Zhixin Wang,Yanyan Zhou,Chang Liu. Association between telomere length and survival in cancer patients: a meta-analysis and review of literature[J]. Front. Med., 2016, 10(2): 191-203.
[3] Alexandra Urman,H. Dean Hosgood. Curbing the burden of lung cancer[J]. Front. Med., 2016, 10(2): 228-232.
[4] Chunxiao Li,Haijuan Wang,Feng Lin,Hui Li,Tao Wen,Haili Qian,Qimin Zhan. Bioinformatic exploration of MTA1-regulated gene networks in colon cancer[J]. Front. Med., 2016, 10(2): 178-182.
[5] Jiangnan Liu,Bin Yi,Zhe Zhang,Yi Cao. CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes[J]. Front. Med., 2016, 10(2): 204-211.
[6] Lan Wang,Jueheng Wu,Jie Yuan,Xun Zhu,Hongmei Wu,Mengfeng Li. Midline2 is overexpressed and a prognostic indicator in human breast cancer and promotes breast cancer cell proliferation in vitro and in vivo[J]. Front. Med., 2016, 10(1): 41-51.
[7] Aixiu Qiao,Feng Gu,Xiaojing Guo,Xinmin Zhang,Li Fu. Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications[J]. Front. Med., 2016, 10(1): 33-40.
[8] Dan Wu,Qingxun Hu,Yizhun Zhu. Therapeutic application of hydrogen sulfide donors: the potential and challenges[J]. Front. Med., 2016, 10(1): 18-27.
[9] Hualiang Lin,Bofu Ning,Jihua Li,Guangqiang Zhao,Yunchao Huang,Linwei Tian. Temporal trend of mortality from major cancers in Xuanwei, China[J]. Front. Med., 2015, 9(4): 487-495.
[10] Yinyin Xie,Yuanliang Zhang,Lu Jiang,Mengmeng Zhang,Zhiwei Chen,Dan Liu,Qiuhua Huang. Disabled homolog 2 is required for migration and invasion of prostate cancer cells[J]. Front. Med., 2015, 9(3): 312-321.
[11] Yi Cao. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications[J]. Front. Med., 2015, 9(3): 261-274.
[12] Daniel Wai-Hung Ho,Alan Ka-Lun Kai,Irene Oi-Lin Ng. TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma[J]. Front. Med., 2015, 9(3): 322-330.
[13] Lingqiang Zhang,Runchen Miao,Xiude Zhang,Wei Chen,Yanyan Zhou,Ruitao Wang,Ruiyao Zhang,Qing Pang,Xinsen Xu,Chang Liu. Exploring the diagnosis markers for gallbladder cancer based on clinical data[J]. Front. Med., 2015, 9(3): 350-355.
[14] Li Bian,Yonghua Ruan,Liju Ma,Hairong Hua,Li Zhou,Xiaoyu Tuo,Zheyan Zhou,Ting Li,Shiyue Liu,Kewei Jin. Pathogenesis sequences in Gejiu miners with lung cancer: an introduction[J]. Front. Med., 2015, 9(3): 344-349.
[15] Peter B. Alexander,Xiao-Fan Wang. Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies[J]. Front. Med., 2015, 9(2): 134-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed