Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2012, Vol. 6 Issue (3) : 296-301    https://doi.org/10.1007/s11684-012-0219-1
RESEARCH ARTICLE
Early and marked up-regulation of TNF-α in acute respiratory distress syndrome after cardiopulmonary bypass
Tao Li1, Nanfu Luo1, Lei Du1, Jin Liu1, Lina Gong1, Jing Zhou2()
1. Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; 2. Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
 Download: PDF(180 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Despite the technique of cardiopulmonary bypass (CPB) improved the development of modern cardiac surgery, many factors during CPB have been reported to induce acute respiratory distress syndrome (ARDS). The present study was to investigate which pro-inflammatory factors involved in the early phase of ARDS. Ten patients underwent valve replacement surgery with or without ARDS were enrolled for analysis of pulmonary function and inflammatory factors release including white blood cell (WBC), neutrophils, CD11b, CD18, interleukin (IL)-8 and tumor necrosis factor-α (TNF-α). The results demonstrated that the ratio of arterial oxygen tension/fraction of inspire oxygen (PaO2/FiO2) was greatly reduced in ARDS patients, but only the release of TNF-α was significantly increased, which was reversely correlated to the values of PaO2/FiO2. Also, the count of neutrophils adhesive to pulmonary endothelial cells was significantly increased in ARDS patients. Therefore, we concluded that TNF-α was quickly up-regulated and involved in the pathogenesis of CPB-induced ARDS via guiding primed neutrophils to pulmonary interstitium.

Keywords tumor necrosis factor-α      cardiopulmonary bypass      inflammation      acute respiratory distress syndrome     
Corresponding Author(s): Zhou Jing,Email:zhoujing9199@163.com   
Issue Date: 05 September 2012
 Cite this article:   
Tao Li,Nanfu Luo,Lei Du, et al. Early and marked up-regulation of TNF-α in acute respiratory distress syndrome after cardiopulmonary bypass[J]. Front Med, 2012, 6(3): 296-301.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-012-0219-1
https://academic.hep.com.cn/fmd/EN/Y2012/V6/I3/296
ARDS (n = 5)Non-ARDS (n = 5)P value
Age (year)38±736±60.765
Male/female2/32/31
Bodyweight (kg)57.6±7.152.4±4.50.314
Body height (cm)159±9157±50.693
Surgical procedure (MVR/DVR)4/14/11
Duration of surgery (min)116±25114±320.796
Duration of cardiac arrest (min)73±2171±170.843
Smoke10
MOSF20
Tab.1  Patient characteristics and operative data
Fig.1  The ratio of PaO/FiO in ARDS and non-ARDS patients. PaO, arterial oxygen pressure; FiO, fraction of inspire oxygen. ARDS, acute respiratory distress syndrome.
Fig.2  The counts of WBC and neutrophil in blood. WBC, white blood cell.
Fig.3  The MFI of CD11b (A) and CD18 (B) in isolated neutrophils of ARDS and non-ARDS patients. MFI, mean fluorescence intensity.
Fig.4  (A) The release of IL-8 in plasma of the ARDS and non-ARDS patients. (B) The relationship between IL-8 level and PaO/FiO. (C) The level of TNF-α in plasma of the ARDS and non-ARDS patients. (D) The relationship between TNF-α release and PaO/FiO.
Fig.5  (A) Representative photomicrographs of neutrophils adhesive to endothelial cells. (B) The count of neutrophils adhesive to endothelial cells of the ARDS and non-ARDS patients. Neutrophils harvested before surgery were used as control.
1 Wan S, LeClerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 1997; 112(3): 676-692
doi: 10.1378/chest.112.3.676 pmid:9315800
2 Matthay MA, Zimmerman GA, Esmon C, Bhattacharya J, Coller B, Doerschuk CM, Floros J, Gimbrone MA Jr, Hoffman E, Hubmayr RD, Leppert M, Matalon S, Munford R, Parsons P, Slutsky AS, Tracey KJ, Ward P, Gail DB, Harabin AL. Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am J Respir Crit Care Med 2003; 167(7): 1027-1035
doi: 10.1164/rccm.200208-966WS pmid:12663342
3 Spragg RG, Bernard GR, Checkley W, Curtis JR, Gajic O, Guyatt G, Hall J, Israel E, Jain M, Needham DM, Randolph AG, Rubenfeld GD, Schoenfeld D, Thompson BT, Ware LB, Young D, Harabin AL. Beyond mortality: future clinical research in acute lung injury. Am J Respir Crit Care Med 2010; 181(10): 1121-1127
doi: 10.1164/rccm.201001-0024WS pmid:20224063
4 Lin S, Walker J, Xu L, Gozal D, Yu J. Behaviours of pulmonary sensory receptors during development of acute lung injury in the rabbit. Exp Physiol 2007; 92(4): 749-755
doi: 10.1113/expphysiol.2006.036673 pmid:17392336
5 Apostolakis E, Filos KS, Koletsis E, Dougenis D. Lung dysfunction following cardiopulmonary bypass. J Card Surg 2010; 25(1): 47-55
doi: 10.1111/j.1540-8191.2009.00823.x pmid:19549041
6 McGrath EE, Marriott HM, Lawrie A, Francis SE, Sabroe I, Renshaw SA, Dockrell DH, Whyte MKB. TNF-related apoptosis-inducing ligand (TRAIL) regulates inflammatory neutrophil apoptosis and enhances resolution of inflammation. J Leukoc Biol 2011; 90(5): 855-865
doi: 10.1189/jlb.0211062 pmid:21562052
7 Strieter RM, Kunkel SL, Keane MP, Standiford TJ. Chemokines in lung injury: Thomas A. Neff Lecture. Chest 1999; 116(1 Suppl): 103S-110S
doi: 10.1378/chest.116.suppl_1.103S pmid:10424625
8 Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 2007; 369(9572): 1553-1564
doi: 10.1016/S0140-6736(07)60604-7 pmid:17482987
9 Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol 2005; 33(4): 319-327
doi: 10.1165/rcmb.F305 pmid:16172252
10 Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol 2011; 6(1): 147-163
doi: 10.1146/annurev-pathol-011110-130158 pmid:20936936
11 Cross LJ, Matthay MA. Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury. Crit Care Clin 2011; 27(2): 355-377
doi: 10.1016/j.ccc.2010.12.005 pmid:21440206
12 Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994; 149(3 Pt 1): 818-824
pmid:7509706
13 Ottonello L, Montecucco F, Bertolotto M, Arduino N, Mancini M, Corcione A, Pistoia V, Dallegri F. CCL3 (MIP-1α) induces in vitro migration of GM-CSF-primed human neutrophils via CCR5-dependent activation of ERK 1/2. Cell Signal 2005; 17(3): 355-363
doi: 10.1016/j.cellsig.2004.08.002 pmid:15567066
14 Zemans RL, Colgan SP, Downey GP. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 2009; 40(5): 519-535
doi: 10.1165/rcmb.2008-0348TR pmid:18978300
15 Meyer-Hoffert U, Wiedow O. Neutrophil serine proteases: mediators of innate immune responses. Curr Opin Hematol 2011; 18(1): 19-24
doi: 10.1097/MOH.0b013e32834115d1 pmid:21042214
16 May AE, Neumann FJ, Sch?mig A, Preissner KT. VLA-4 (α(4)β(1)) engagement defines a novel activation pathway for β(2) integrin-dependent leukocyte adhesion involving the urokinase receptor. Blood 2000; 96(2): 506-513
pmid:10887112
17 Lee WL, Downey GP. Neutrophil activation and acute lung injury. Curr Opin Crit Care 2001; 7(1): 1-7
doi: 10.1097/00075198-200102000-00001 pmid:11373504
18 Soehnlein O. Multiple roles for neutrophils in atherosclerosis. Circ Res 2012; 110(6): 875-888
doi: 10.1161/CIRCRESAHA.111.257535 pmid:22427325
19 Tandon R, Sha’afi RI, Thrall RS. Neutrophil β2-integrin upregulation is blocked by a p38 MAP kinase inhibitor. Biochem Biophys Res Commun 2000; 270(3): 858-862
doi: 10.1006/bbrc.2000.2540 pmid:10772916
[1] Lingling Tang, Yingan Jiang, Mengfei Zhu, Lijun Chen, Xiaoyang Zhou, Chenliang Zhou, Peng Ye, Xiaobei Chen, Baohong Wang, Zhenyu Xu, Qiang Zhang, Xiaowei Xu, Hainv Gao, Xiaojun Wu, Dong Li, Wanli Jiang, Jingjing Qu, Charlie Xiang, Lanjuan Li. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19[J]. Front. Med., 2020, 14(5): 664-673.
[2] Jian Liu, Pingyan Shen, Xiaobo Ma, Xialian Yu, Liyan Ni, Xu Hao, Weiming Wang, Nan Chen. White blood cell count and the incidence of hyperuricemia: insights from a community-based study[J]. Front. Med., 2019, 13(6): 741-746.
[3] Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, Leonid P. Churilov. Autoimmunity in acute ischemic stroke and the role of blood--brain barrier: the dark side or the light one?[J]. Front. Med., 2019, 13(4): 420-426.
[4] Ning Jiang, Yao Li, Ting Shu, Jing Wang. Cytokines and inflammation in adipogenesis: an updated review[J]. Front. Med., 2019, 13(3): 314-329.
[5] Zhen Zhang, Na Jiang, Zhaohui Ni. Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis[J]. Front. Med., 2017, 11(3): 349-358.
[6] Marijke A. de Vries,Arash Alipour,Erwin Birnie,Andrew Westzaan,Selvetta van Santen,Ellen van der Zwan,Anho H. Liem,Noëlle van der Meulen,Manuel Castro Cabezas. Coronary leukocyte activation in relation to progression of coronary artery disease[J]. Front. Med., 2016, 10(1): 85-90.
[7] Jianping Ye. Beneficial metabolic activities of inflammatory cytokine interleukin 15 in obesity and type 2 diabetes[J]. Front. Med., 2015, 9(2): 139-145.
[8] Zhicheng Zhang,Jun Yang,Mingchao Li,Wei Cai,Qingquan Liu,Tao Wang,Xiaolin Guo,Shaogang Wang,Jihong Liu,Zhangqun Ye. Paratesticular fibrous pseudotumor: a report of five cases and literature review[J]. Front. Med., 2014, 8(4): 484-488.
[9] Khurram Siddique, Shirin Mirza, Gandra Harinath. Appendiceal inflammation affects the length of stay following appendicectomy amongst children: a myth or reality?[J]. Front Med, 2013, 7(2): 264-269.
[10] Jianping Ye. Mechanisms of insulin resistance in obesity[J]. Front Med, 2013, 7(1): 14-24.
[11] Min-Hao WU, Ping ZHANG, Xi HUANG, . Toll-like receptors in innate immunity and infectious diseases[J]. Front. Med., 2010, 4(4): 385-393.
[12] Xiaoxia LU, Weikun HU, Shengdao XIONG, Guopeng XU, Fen LAN. Tim-3 mRNA expression in peripheral blood lymphocytes from asthmatic patients[J]. Front Med Chin, 2009, 3(2): 187-190.
[13] Jiangtao YAN, Rutai HUI, Daowen WANG. Elevated C-reactive protein levels predict worsening prognosis in Chinese patients with first-onset stroke[J]. Front Med Chin, 2009, 3(1): 30-35.
[14] YANG Jurong, HE Yani, SHEN Haiying, DING Hanlu, LI Kailong, WANG Huiming. Expression of renal cubilin and its potential role in tubulointerstitial inflammation induced by albumin overload[J]. Front. Med., 2008, 2(1): 25-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed