Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2012, Vol. 6 Issue (4) : 411-415     DOI: 10.1007/s11684-012-0226-2
RESEARCH ARTICLE |
Tramadol reinforces antidepressant effects of ketamine with increased levels of brain-derived neurotrophic factor and tropomyosin-related kinase B in rat hippocampus
Chun Yang, Xiaomin Li, Nan Wang, Shixia Xu, Jianjun Yang, Zhiqiang Zhou()
Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China
Download: PDF(103 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

Ketamine exerts rapid and robust antidepressant properties in both animal models and depressed patients and tramadol possesses potential antidepressant effects. Brain-derived neurotrophic factor (BDNF) is an important biomarker for mood disorders and tropomyosin-related kinase B (TrkB) is a high affinity catalytic receptor for BDNF. We hypothesized that tramadol pretreatment might reinforce ketamine-elicited antidepressant effects with significant changes in hippocampal BDNF and TrkB levels in rats. Immobility time of rats receiving different treatment in the forced swimming test (FST) was observed. Levels of BDNF and TrkB in hippocampus were measured by enzyme linked immunosorbent assay. Results showed that tramadol (5 mg/kg) administrated alone neither elicited antidepressant effects nor altered BDNF or TrkB level. However, pretreatment with tramadol (5 mg/kg) enhanced the ketamine (10 mg/kg) -elicited antidepressant effects and upregulated the BDNF and TrkB levels in hippocampus. In conclusion, tramadol pretreatment reinforces the ketamine-elicited antidepressant effects, which is associated with the increased levels of BDNF and TrkB in rat hippocampus.

Keywords tramadol      ketamine      antidepressant      brain-derived neurotrophic factor      tropomyosin-related kinase B     
Corresponding Authors: Zhou Zhiqiang,Email:zq_zhou@163.com   
Issue Date: 05 December 2012
URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-012-0226-2     OR     http://academic.hep.com.cn/fmd/EN/Y2012/V6/I4/411
Fig.1  Effects of different interventions (saline+ saline, tramadol 5 mg/kg+ saline, saline+ ketamine 10 mg/kg, and tramadol 5 mg/kg+ ketamine 10 mg/kg, i.p.) on the immobility time of rats in the FST. Bars represent means±SD. *<0.05, the other three groups vs. the saline+ saline group; <0.05, the tramadol+ ketamine group vs. the saline+ ketamine group.
Fig.2  Effects of different interventions (saline+ saline, tramadol 5 mg/kg+ saline, saline+ ketamine 10 mg/kg, and tramadol 5 mg/kg+ ketamine 10 mg/kg, i.p.) on the expression of hippocampal BDNF of rats in the FST. Bars represent means±SD. *<0.05, the other three groups vs. the saline+ saline group; <0.05, the tramadol+ ketamine group vs. the saline+ ketamine group.
Fig.3  Effects of different interventions (saline+ saline, tramadol 5 mg/kg+ saline, saline+ ketamine 10 mg/kg, and tramadol 5 mg/kg+ ketamine 10 mg/kg, i.p.) on the expression of hippocampal TrkB of rats in the FST. Bars represent means±SD. *<0.05, the other three groups vs. the saline+ saline group; <0.05, the tramadol+ ketamine group vs. the saline+ ketamine group.
1 Zarate CA Jr, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, Selter J, Marquardt CA, Liberty V, Luckenbaugh DA. Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 2012; 71(11): 939-946
doi: 10.1016/j.biopsych.2011.12.010 pmid:22297150
2 Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 2011; 69(8): 754-761
doi: 10.1016/j.biopsych.2010.12.015 pmid:21292242
3 Barber J. Examining the use of tramadol hydrochloride as an antidepressant. Exp Clin Psychopharmacol 2011; 19(2): 123-130
doi: 10.1037/a0022721 pmid:21463069
4 Yalcin I, Aksu F, Bodard S, Chalon S, Belzung C. Antidepressant-like effect of tramadol in the unpredictable chronic mild stress procedure: possible involvement of the noradrenergic system. Behav Pharmacol 2007; 18(7): 623-631
doi: 10.1097/FBP.0b013e3282eff109 pmid:17912046
5 Hashimoto K. Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci 2010; 64(4): 341-357
doi: 10.1111/j.1440-1819.2010.02113.x pmid:20653908
6 Russo-Neustadt A, Ha T, Ramirez R, Kesslak JP. Physical activity-antidepressant treatment combination: impact on brain-derived neurotrophic factor and behavior in an animal model. Behav Brain Res 2001; 120(1): 87-95
doi: 10.1016/S0166-4328(00)00364-8 pmid:11173088
7 Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997; 56(1): 131-137
doi: 10.1016/S0091-3057(96)00169-4 pmid:8981620
8 Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(1): 140-144
doi: 10.1016/j.pnpbp.2007.07.027 pmid:17884272
9 Castrén E, V?ikar V, Rantam?ki T. Role of neurotrophic factors in depression. Curr Opin Pharmacol 2007; 7(1): 18-21
doi: 10.1016/j.coph.2006.08.009 pmid:17049922
10 Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castrén E. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 2003; 23(1): 349-357
pmid:12514234
11 Rantam?ki T, Knuuttila JE, Hokkanen ME, Castrén E. The effects of acute and long-term lithium treatments on trkB neurotrophin receptor activation in the mouse hippocampus and anterior cingulate cortex. Neuropharmacology 2006; 50(4): 421-427
doi: 10.1016/j.neuropharm.2005.10.001 pmid:16300803
12 Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 1995; 121(1): 66-72
doi: 10.1007/BF02245592 pmid:8539342
13 Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977; 266(5604): 730-732
doi: 10.1038/266730a0 pmid:559941
14 Jesse CR, Bortolatto CF, Savegnago L, Rocha JB, Nogueira CW. Involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tramadol in the rat forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(8): 1838-1843
doi: 10.1016/j.pnpbp.2008.08.010 pmid:18773934
15 Beurel E, Song L, Jope RS. Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Mol Psychiatry 2011; 16(11): 1068-1070
doi: 10.1038/mp.2011.47 pmid:21502951
17 Bamigbade TA, Davidson C, Langford RM, Stamford JA. Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus. Br J Anaesth 1997; 79(3): 352-356
doi: 10.1093/bja/79.3.352 pmid:9389855
18 Nishimura M, Sato K, Okada T, Yoshiya I, Schloss P, Shimada S, Tohyama M. Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells. Anesthesiology 1998; 88(3): 768-774
doi: 10.1097/00000542-199803000-00029 pmid:9523822
19 Markowitz JS, Patrick KS. Venlafaxine-tramadol similarities. Med Hypotheses 1998; 51(2): 167-168
doi: 10.1016/S0306-9877(98)90112-8 pmid:9881825
20 Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL. Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp Ther 1992; 260(1): 275-285
pmid:1309873
21 Valverde O, Micó JA, Maldonado R, Mellado M, Gibert-Rahola J. Participation of opioid and monoaminergic mechanisms on the antinociceptive effect induced by tricyclic antidepressants in two behavioural pain tests in mice. Prog Neuropsychopharmacol Biol Psychiatry 1994; 18(6): 1073-1092
doi: 10.1016/0278-5846(94)90132-5 pmid:7824761
22 Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15(11): 7539-7547
pmid:7472505
23 Machado-Vieira R, Yuan P, Brutsche N, DiazGranados N, Luckenbaugh D, Manji HK, Zarate CA Jr. Brain-derived neurotrophic factor and initial antidepressant response to an N-methyl-D-aspartate antagonist. J Clin Psychiatry 2009; 70(12): 1662-1666
doi: 10.4088/JCP.08m04659 pmid:19744406
24 Faron-Górecka A, Ku?mider M, Inan SY, Siwanowicz J, Piwowarczyk T, Dziedzicka-Wasylewska M. Long-term exposure of rats to tramadol alters brain dopamine and alpha 1-adrenoceptor function that may be related to antidepressant potency. Eur J Pharmacol 2004; 501(1-3): 103-110
doi: 10.1016/j.ejphar.2004.08.011 pmid:15464068
[1] Yue’e Dai, Dongxu Lei, Zhenghua Huang, Yan Yin, G. Allen Finley, Yunxia Zuo. Estimation of the minimum effective dose of tramadol for postoperative analgesia in infants using the continual reassessment method[J]. Front Med, 2012, 6(3): 288-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed