Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2013, Vol. 7 Issue (2) : 223-230     DOI: 10.1007/s11684-013-0252-8
The role of microRNAs in adipocyte differentiation
Rong Zhang, Di Wang, Zhuying Xia, Chao Chen, Peng Cheng, Hui Xie, Xianghang Luo()
Institute of Endocrinology & Metabolism, The Second Xiangya Hospital of Central South University, Changsha 410011, China
Download: PDF(202 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Adipocytes differentiate from mesenchymal stem cells (MSCs) in a process known as adipogenesis. The programme of adipogenesis is regulated by the sequential activation of transcription factors and several signaling pathways. There is growing evidence indicating that a class of small non-coding single-stranded RNAs known as “microRNAs (miRNAs)” also are involved in this process. In this review, we summarize the biology and functional mechanisms of miRNAs in adipocyte differentiation. In addition, we further discuss the miRNAs profiling, the miRNAs function and miRNAs target prediction in the adipogenesis.

Keywords microRNA      adipocyte      differentiation      adipogenesis     
Corresponding Authors: Luo Xianghang,   
Issue Date: 05 June 2013
URL:     OR
Fig.1  miRNAs are involved in the regulation of adipogenesis and osteogenesis. Mesenchymal stem cells are multipontent, being able to commit not only to preadipocytes, but also to preosteoblasts, premyoblasts and prechondrocytes (not shown). Some miRNAs identified as differential regulators in adipogenesis and osteogenesis are shown.
miR-143miR-17-92miR-103miR-21miR-519dmiR-200miR-210miR-30miR204/211miR-375miR-27miR-130Let-7miR-448↑Adipogenesis↑Adipogenesis↑Adipogenesis↑Adipogenesis↑Adipogenesis↑Adipogenesis↑Adipogenesis↑Adipogenesis↑Adipogenesis↑Adipogenesis↓Adipogenesis↓Adipogenesis↓Adipogenesis↓AdipogenesisERK5RB2/ P130-TGFBR2 , STAT3PPARα-TCF7L2RUNX2RUNX2-PPARγPPARγHMGA2KLF5 [30,31,46] [47-50] [31] [51,52] [53] [55] [56] [57] [58] [59] [60-62] [63] [64] [66]
Tab.1  miRNA associated with adipogenesis in mammals
1 Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell 2007; 131(2): 242-256
doi: 10.1016/j.cell.2007.10.004 pmid:17956727
2 Otto TC, Lane MD. Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol 2005; 40(4): 229-242
doi: 10.1080/10409230591008189 pmid:16126487
3 Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998; 78(3): 783-809
4 Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev 2000; 14(11): 1293-1307
5 MacDougald OA, Mandrup S. Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 2002; 13(1): 5-11
doi: 10.1016/S1043-2760(01)00517-3 pmid:11750856
6 Blüher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, Kahn CR. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 2002; 3(1): 25-38
doi: 10.1016/S1534-5807(02)00199-5 pmid:12110165
7 Smith PJ, Wise LS, Berkowitz R, Wan C, Rubin CS. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem 1988; 263(19): 9402-9408
8 Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6(5): 376-385
doi: 10.1038/nrm1644 pmid:15852042
9 [No authors listed]. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000; 894: i-xii , 1-253
10 Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 2009; 119(12): 3666-3677
doi: 10.1172/JCI39832 pmid:19920351
11 He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5(7): 522-531
doi: 10.1038/nrg1379 pmid:15211354
12 Yang L, Cheng P, Chen C, He HB, Xie GQ, Zhou HD, Xie H, Wu XP, Luo XH. miR-93/Sp7 function loop mediates osteoblast mineralization. J Bone Miner Res 2012; 27(7): 1598-1606
doi: 10.1002/jbmr.1621 pmid:22467200
13 Hu R, Liu W, Li H, Yang L, Chen C, Xia ZY, Guo LJ, Xie H, Zhou HD, Wu XP, Luo XH. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. J Biol Chem 2011; 286(14): 12328-12339
doi: 10.1074/jbc.M110.176099 pmid:21324897
14 Li H, Li WX, Ding SW. Induction and suppression of RNA silencing by an animal virus. Science 2002; 296(5571): 1319-1321
doi: 10.1126/science.1070948 pmid:12016316
15 Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 2003; 100(17): 9779-9784
doi: 10.1073/pnas.1630797100 pmid:12902540
16 Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, R?dmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425(6956): 415-419
doi: 10.1038/nature01957 pmid:14508493
17 Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17(24): 3011-3016
doi: 10.1101/gad.1158803 pmid:14681208
18 Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303(5654): 95-98
doi: 10.1126/science.1090599 pmid:14631048
19 Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432(7014): 235-240
doi: 10.1038/nature03120 pmid:15531877
20 Tan GS, Garchow BG, Liu X, Yeung J, Morris JP 4th, Cuellar TL, McManus MT, Kiriakidou M. Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Res 2009; 37(22): 7533-7545
doi: 10.1093/nar/gkp812 pmid:19808937
21 Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002; 297(5589): 2056-2060
doi: 10.1126/science.1073827 pmid:12154197
22 Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 2007; 17(3): 118-126
doi: 10.1016/j.tcb.2006.12.007 pmid:17197185
23 Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R, Brown D, Labourier E. An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA 2005; 11(9): 1461-1470
doi: 10.1261/rna.2610405 pmid:16043497
24 Hilton C, Neville MJ. Karpe F. MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes (Lond) 2013;37:325-332 22531086
doi: 10.1038/ijo.2012.59
25 Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, Muckenthaler MU. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 2006; 12(5): 913-920
doi: 10.1261/rna.2332406 pmid:16540696
26 Válóczi A, Hornyik C, Varga N, Burgyán J, Kauppinen S, Havelda Z. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 2004; 32(22): e175
doi: 10.1093/nar/gnh171 pmid:15598818
27 Neville MJ, Collins JM, Gloyn AL, McCarthy MI, Karpe F. Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring) 2011; 19(4): 888-892
doi: 10.1038/oby.2010.257 pmid:20948521
28 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10(1): 57-63
doi: 10.1038/nrg2484 pmid:19015660
29 Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 2008; 14(1): 35-42
doi: 10.1261/rna.804508 pmid:18025253
30 Kajimoto K, Naraba H, Iwai N. MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA 2006; 12(9): 1626-1632
doi: 10.1261/rna.7228806 pmid:16870994
31 Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009; 58(5): 1050-1057
doi: 10.2337/db08-1299 pmid:19188425
32 Ailhaud G, Grimaldi P, Négrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 1992; 12(1): 207-233
doi: 10.1146/ pmid:1503804
33 Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 2000; 16(1): 145-171
doi: 10.1146/annurev.cellbio.16.1.145 pmid:11031233
34 Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006; 7(12): 885-896
doi: 10.1038/nrm2066 pmid:17139329
35 Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994; 79(7): 1147-1156
doi: 10.1016/0092-8674(94)90006-X pmid:8001151
36 Tamori Y, Masugi J, Nishino N, Kasuga M. Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 2002; 51(7): 2045-2055
doi: 10.2337/diabetes.51.7.2045 pmid:12086932
37 Hamm JK, Park BH, Farmer SR. A role for C/EBPbeta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem 2001; 276(21): 18464-18471
doi: 10.1074/jbc.M100797200 pmid:11279134
38 Shao D, Lazar MA. Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem 1997; 272(34): 21473-21478
doi: 10.1074/jbc.272.34.21473 pmid:9261165
39 Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N, Johnson KW, Harrison SD, MacDougald OA. Regulation of Wnt signaling during adipogenesis. J Biol Chem 2002; 277(34): 30998-31004
doi: 10.1074/jbc.M204527200 pmid:12055200
40 Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. Inhibition of adipogenesis by Wnt signaling. Science 2000; 289(5481): 950-953
doi: 10.1126/science.289.5481.950 pmid:10937998
41 Arango NA, Szotek PP, Manganaro TF, Oliva E, Donahoe PK, Teixeira J. Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev Biol 2005; 288(1): 276-283
doi: 10.1016/j.ydbio.2005.09.045 pmid:16256976
42 Choy L, Skillington J, Derynck R. Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J Cell Biol 2000; 149(3): 667-682
doi: 10.1083/jcb.149.3.667 pmid:10791980
43 Spiegelman BM, Ginty CA. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell 1983; 35(3 Pt 2): 657-666
doi: 10.1016/0092-8674(83)90098-3 pmid:6686086
44 Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126(4): 677-689
doi: 10.1016/j.cell.2006.06.044 pmid:16923388
45 Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003; 13(9): 790-795
doi: 10.1016/S0960-9822(03)00250-1 pmid:12725740
46 Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, Dean NM, Freier SM, Bennett CF, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279(50): 52361-52365
doi: 10.1074/jbc.C400438200 pmid:15504739
47 Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008; 133(2): 217-222
doi: 10.1016/j.cell.2008.04.001 pmid:18423194
48 Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ, Li X. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA 2008; 105(8): 2889-2894
doi: 10.1073/pnas.0800178105 pmid:18287052
49 Richon VM, Lyle RE, McGehee RE Jr. Regulation and expression of retinoblastoma proteins p107 and p130 during 3T3-L1 adipocyte differentiation. J Biol Chem 1997; 272(15): 10117-10124
doi: 10.1074/jbc.272.15.10117 pmid:9092557
50 Prince AM, May JS, Burton GR, Lyle RE, McGehee RE Jr. Proteasomal degradation of retinoblastoma-related p130 during adipocyte differentiation. Biochem Biophys Res Commun 2002; 290(3): 1066-1071
doi: 10.1006/bbrc.2001.6291 pmid:11798183
51 Kim YJ, Hwang SJ, Bae YC, Jung JS. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009; 27(12): 3093-3102
52 Kim YJ, Hwang SH, Cho HH, Shin KK, Bae YC, Jung JS. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol 2012; 227(1): 183-193
doi: 10.1002/jcp.22716 pmid:21381024
53 Martinelli R, Nardelli C, Pilone V, Buonomo T, Liguori R, Castanò I, Buono P, Masone S, Persico G, Forestieri P, Pastore L, Sacchetti L. miR-519d overexpression is associated with human obesity. Obesity (Silver Spring) 2010; 18(11): 2170-2176
doi: 10.1038/oby.2009.474 pmid:20057369
55 Kennell JA, Gerin I, MacDougald OA, Cadigan KM. The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proc Natl Acad Sci USA 2008; 105(40): 15417-15422
doi: 10.1073/pnas.0807763105 pmid:18824696
56 Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Li A, Xie Y, Li J, Zhao X, He Z, Mo D. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 2010; 11(1): 320
doi: 10.1186/1471-2164-11-320 pmid:20492721
57 Zaragosi LE, Wdziekonski B, Brigand KL, Villageois P, Mari B, Waldmann R, Dani C, Barbry P. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 2011; 12(7): R64
doi: 10.1186/gb-2011-12-7-r64 pmid:21767385
58 Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 2010; 28(2): 357-364
59 Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS, Yao CH, Zhu BY, Gao ZP, Zhang L, Liao DF. MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol 2011; 38(4): 239-246
doi: 10.1111/j.1440-1681.2011.05493.x pmid:21291493
60 Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS J 2009; 276(8): 2348-2358
doi: 10.1111/j.1742-4658.2009.06967.x pmid:19348006
61 Kim SY, Kim AY, Lee HW, Son YH, Lee GY, Lee JW, Lee YS, Kim JB. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 2010; 392(3): 323-328
doi: 10.1016/j.bbrc.2010.01.012 pmid:20060380
62 Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun 2009; 390(2): 247-251
doi: 10.1016/j.bbrc.2009.09.098 pmid:19800867
63 Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, Selimyan R, Egan JM, Smith SR, Fried SK, Gorospe M. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol 2011; 31(4): 626-638
doi: 10.1128/MCB.00894-10 pmid:21135128
64 Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 2009; 23(6): 925-931
doi: 10.1210/me.2008-0298 pmid:19324969
65 Anand A, Chada K. In vivo modulation of Hmgic reduces obesity. Nat Genet 2000; 24(4): 377-380
doi: 10.1038/74207 pmid:10742101
66 Kinoshita M, Ono K, Horie T, Nagao K, Nishi H, Kuwabara Y, Takanabe-Mori R, Hasegawa K, Kita T, Kimura T. Regulation of adipocyte differentiation by activation of serotonin (5-HT) receptors 5-HT2AR and 5-HT2CR and involvement of microRNA-448-mediated repression of KLF5. Mol Endocrinol 2010; 24(10): 1978-1987
doi: 10.1210/me.2010-0054 pmid:20719859
67 Rajewsky N. microRNA target predictions in animals. Nat Genet 2006; 38( Suppl): S8-S13
doi: 10.1038/ng1798 pmid:16736023
68 John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. PLoS Biol 2004; 2(11): e363
doi: 10.1371/journal.pbio.0020363 pmid:15502875
69 Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003; 115(7): 787-798
doi: 10.1016/S0092-8674(03)01018-3 pmid:14697198
70 Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5): 495-500
doi: 10.1038/ng1536 pmid:15806104
71 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15-20
doi: 10.1016/j.cell.2004.12.035 pmid:15652477
72 Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126(6): 1203-1217
doi: 10.1016/j.cell.2006.07.031 pmid:16990141
73 Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433(7027): 769-773
doi: 10.1038/nature03315 pmid:15685193
74 Wang X, Wang X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res 2006; 34(5): 1646-1652
doi: 10.1093/nar/gkl068 pmid:16549876
75 Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455(7209): 64-71
doi: 10.1038/nature07242 pmid:18668037
76 Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004; 18(10): 1165-1178
doi: 10.1101/gad.1184704 pmid:15131085
77 Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460(7254): 479-486
78 Stenvang J, Kauppinen S. MicroRNAs as targets for antisense-based therapeutics. Expert Opin Biol Ther 2008; 8(1): 59-81
doi: 10.1517/14712598.8.1.59 pmid:18081537
79 Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4(9): 721-726
doi: 10.1038/nmeth1079 pmid:17694064
80 Liu Z, Sall A, Yang D. MicroRNA: An emerging therapeutic target and intervention tool. Int J Mol Sci 2008; 9(6): 978-999
doi: 10.3390/ijms9060978 pmid:19325841
81 Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438(7068): 685-689
doi: 10.1038/nature04303 pmid:16258535
82 Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtj?rn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452(7189): 896-899
doi: 10.1038/nature06783 pmid:18368051
[1] Nan Ding,Jiafei Xi,Yanming Li,Xiaoyan Xie,Jian Shi,Zhaojun Zhang,Yanhua Li,Fang Fang,Sihan Wang,Wen Yue,Xuetao Pei,Xiangdong Fang. Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation[J]. Front. Med., 2016, 10(3): 297-310.
[2] Xiaoyu Wang,Yuxuan Gao,Haigang Shi,Na Liu,Wei Zhang,Hongbo Li. Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells[J]. Front. Med., 2016, 10(3): 286-296.
[3] Aining Xu,Lin Cheng. Chemical transdifferentiation: closer to regenerative medicine[J]. Front. Med., 2016, 10(2): 152-165.
[4] Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility[J]. Front. Med., 2015, 9(3): 331-343.
[5] Shuwen Qian,Haiyan Huang,Qiqun Tang. Brown and beige fat: the metabolic function, induction, and therapeutic potential[J]. Front. Med., 2015, 9(2): 162-172.
[6] Feng Wang,Chen Chen,Daowen Wang. Circulating microRNAs in cardiovascular diseases: from biomarkers to therapeutic targets[J]. Front. Med., 2014, 8(4): 404-418.
[7] Guangqing Wang, Zhaofan Xia. Monocyte subsets and their differentiation tendency after burn injury[J]. Front Med, 2013, 7(4): 397-400.
[8] Ji Qi, David Mu. MicroRNAs and lung cancers: from pathogenesis to clinical implications[J]. Front Med, 2012, 6(2): 134-155.
[9] Zhuying Xia, Chao Chen, Peng Chen, Hui Xie, Xianghang Luo. MicroRNAs and their roles in osteoclast differentiation[J]. Front Med, 2011, 5(4): 414-419.
[10] Shihua Wang, Xuebin Qu, Robert Chunhua Zhao. Mesenchymal stem cells hold promise for regenerative medicine[J]. Front Med, 2011, 5(4): 372-378.
[11] Ling-Yan XU PhD, Xin-Ran MA PhD, Xiao-Ying LI PhD, MD, Shu WANG PhD, Guang NING PhD, MD, Jie-Li LI PhD, Jian-Ming XU PhD, . Ablation of steroid receptor coactivator-3 in mice impairs adipogenesis and enhances energy expenditure[J]. Front. Med., 2010, 4(2): 229-234.
[12] Gang LI MD , Xiaojia XIONG MM , . MicroRNAs and hepatitis viruses[J]. Front. Med., 2009, 3(3): 265-270.
[13] GE Jian, LIU Jingbo. The stem cell and tissue engineering research in Chinese ophthalmology[J]. Front. Med., 2007, 1(1): 6-10.
Full text