Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2013, Vol. 7 Issue (4) : 445-451    https://doi.org/10.1007/s11684-013-0291-1
REVIEW
Group III metabotropic glutamate receptors and drug addiction
Limin Mao, Minglei Guo, Daozhong Jin, Bing Xue, John Q. Wang()
Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
 Download: PDF(151 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Neuroadaptations of glutamatergic transmission in the limbic reward circuitry are linked to persistent drug addiction. Accumulating data have demonstrated roles of ionotropic glutamate receptors and group I and II metabotropic glutamate receptors (mGluRs) in this event. Emerging evidence also identifies Gαi/o-coupled group III mGluRs (mGluR4/7/8 subtypes enriched in the limbic system) as direct substrates of drugs of abuse and active regulators of drug action. Auto- and heteroreceptors of mGluR4/7/8 reside predominantly on nerve terminals of glutamatergic corticostriatal and GABAergic striatopallidal pathways, respectively. These presynaptic receptors regulate basal and/or phasic release of respective transmitters to maintain basal ganglia homeostasis. In response to operant administration of common addictive drugs, such as psychostimulants (cocaine and amphetamine), alcohol and opiates, limbic group III mGluRs undergo drastic adaptations to contribute to the enduring remodeling of excitatory synapses and to usually suppress drug seeking behavior. As a result, a loss-of-function mutation (knockout) of individual group III receptor subtypes often promotes drug seeking. This review summarizes the data from recent studies on three group III receptor subtypes (mGluR4/7/8) expressed in the basal ganglia and analyzes their roles in the regulation of dopamine and glutamate signaling in the striatum and their participation in the addictive properties of three major classes of drugs (psychostimulants, alcohol, and opiates).

Keywords group III metabotropic glutamate receptors      cocaine      amphetamine      alcohol      opiate     
Corresponding Author(s): Wang John Q.,Email:wangjq@umkc.edu   
Issue Date: 05 December 2013
 Cite this article:   
Limin Mao,Minglei Guo,Daozhong Jin, et al. Group III metabotropic glutamate receptors and drug addiction[J]. Front Med, 2013, 7(4): 445-451.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-013-0291-1
https://academic.hep.com.cn/fmd/EN/Y2013/V7/I4/445
Fig.1  A schematic diagram illustrating distribution of group III mGluRs in the basal ganglia. The striatum (CPu and NAc) receives dopaminergic inputs from the substantia nigra pars compacta (SNc) and VTA and glutamatergic (Glu) inputs from the cerebral cortex, thalamus, and other forebrain areas (i.e., glutamatergic inputs from the hippocampus and amygdala to the NAc). Striatal neurons project two GABAergic pathways (D1 receptor-mediated direct and D2 receptor-mediated indirect pathways) to regulate outflow of the basal ganglia to the motor cortex. Group III mGluRs (mGluR4, mGluR7, and/or mGluR8) are distributed primarily in presynaptic terminals. Other abbreviations: GPe, external globus pallidus; GPi, internal globus pallidus; VP, ventral pallidum; SNr, substantia nigra pars reticulata; STN, subthalamic nucleus.
1 Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999; 51(1): 7-61
pmid:10049997
2 Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 1997; 37(1): 205-237
doi: 10.1146/annurev.pharmtox.37.1.205 pmid:9131252
3 Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 2001; 24(2): 97-129
doi: 10.1016/S0893-133X(00)00195-0 pmid:11120394
4 Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 2005; 162(8): 1403-1413
doi: 10.1176/appi.ajp.162.8.1403 pmid:16055761
5 Graybiel AM. Habits, rituals, and the evaluative brain. Annu Rev Neurosci 2008; 31(1): 359-387
doi: 10.1146/annurev.neuro.29.051605.112851 pmid:18558860
6 Tzschentke TM, Schmidt WJ. Glutamatergic mechanisms in addiction. Mol Psychiatry 2003; 8(4): 373-382
doi: 10.1038/sj.mp.4001269 pmid:12740594
7 Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006; 29(1): 565-598
doi: 10.1146/annurev.neuro.29.051605.113009 pmid:16776597
8 Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009; 10(8): 561-572
doi: 10.1038/nrn2515 pmid:19571793
9 Bowers MS, Chen BT, Bonci A. AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future. Neuron 2010; 67(1): 11-24
doi: 10.1016/j.neuron.2010.06.004 pmid:20624588
10 Schmidt HD, Pierce RC. Cocaine-induced neuroadaptations in glutamate transmission: potential therapeutic targets for craving and addiction. Ann N Y Acad Sci 2010; 1187(1): 35-75
doi: 10.1111/j.1749-6632.2009.05144.x pmid:20201846
11 Kenny PJ, Markou A. The ups and downs of addiction: role of metabotropic glutamate receptors. Trends Pharmacol Sci 2004; 25(5): 265-272
doi: 10.1016/j.tips.2004.03.009 pmid:15120493
12 Bird MK, Lawrence AJ. Group I metabotropic glutamate receptors: involvement in drug-seeking and drug-induced plasticity. Curr Mol Pharmacol 2009; 2(1): 83-94
pmid:20021449
13 Moussawi K, Kalivas PW. Group II metabotropic glutamate receptors (mGlu2/3) in drug addiction. Eur J Pharmacol 2010; 639(1-3): 115-122
doi: 10.1016/j.ejphar.2010.01.030 pmid:20371233
14 Olive MF. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010; 639(1-3): 47-58
doi: 10.1016/j.ejphar.2010.01.029 pmid:20371237
15 Ribeiro FM, Paquet M, Cregan SP, Ferguson SS. Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol Disord Drug Targets 2010; 9(5): 574-595
doi: 10.2174/187152710793361612 pmid:20632969
16 Wierońska JM, Pilc A. Metabotropic glutamate receptors in the tripartite synapse as a target for new psychotropic drugs. Neurochem Int 2009; 55(1-3): 85-97
doi: 10.1016/j.neuint.2009.02.019 pmid:19428811
17 Lavreysen H, Dautzenberg FM. Therapeutic potential of group III metabotropic glutamate receptors. Curr Med Chem 2008; 15(7): 671-684
doi: 10.2174/092986708783885246 pmid:18336281
18 Duty S. Therapeutic potential of targeting group III metabotropic glutamate receptors in the treatment of Parkinson’s disease. Br J Pharmacol 2010; 161(2): 271-287
doi: 10.1111/j.1476-5381.2010.00882.x pmid:20735415
19 Conn PJ, Battaglia G, Marino MJ, Nicoletti F. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 2005; 6(10): 787-798
doi: 10.1038/nrn1763 pmid:16276355
20 Bradley SR, Standaert DG, Levey AI, Conn PJ. Distribution of group III mGluRs in rat basal ganglia with subtype-specific antibodies. Ann N Y Acad Sci 1999; 868(1 MOLECULAR AND): 531-534
doi: 10.1111/j.1749-6632.1999.tb11322.x pmid:10414330
21 Kosinski CM, Risso Bradley S, Conn PJ, Levey AI, Landwehrmeyer GB, Penney JB Jr, Young AB, Standaert DG. Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. J Comp Neurol 1999; 415(2): 266-284
doi: 10.1002/(SICI)1096-9861(19991213)415:2<266::AID-CNE9>3.0.CO;2-7 pmid:10545164
22 Corti C, Aldegheri L, Somogyi P, Ferraguti F. Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 2002; 110(3): 403-420
doi: 10.1016/S0306-4522(01)00591-7 pmid:11906782
23 Messenger MJ, Dawson LG, Duty S. Changes in metabotropic glutamate receptor 1-8 gene expression in the rodent basal ganglia motor loop following lesion of the nigrostriatal tract. Neuropharmacology 2002; 43(2): 261-271
doi: 10.1016/S0028-3908(02)00090-4 pmid:12213280
24 Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 1993; 268(16): 11868-11873
pmid:8389366
25 Pisani A, Calabresi P, Centonze D, Bernardi G. Activation of group III metabotropic glutamate receptors depresses glutamatergic transmission at corticostriatal synapse. Neuropharmacology 1997; 36(6): 845-851
doi: 10.1016/S0028-3908(96)00177-3 pmid:9225312
26 Manzoni O, Michel JM, Bockaert J. Metabotropic glutamate receptors in the rat nucleus accumbens. Eur J Neurosci 1997; 9(7): 1514-1523
doi: 10.1111/j.1460-9568.1997.tb01506.x pmid:9240409
27 Cuomo D, Martella G, Barabino E, Platania P, Vita D, Madeo G, Selvam C, Goudet C, Oueslati N, Pin JP, Acher F, Pisani A, Beurrier C, Melon C, Kerkerian-Le Goff L, Gubellini P. Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson’s disease treatment. J Neurochem 2009; 109(4): 1096-1105
doi: 10.1111/j.1471-4159.2009.06036.x pmid:19519781
28 Marino MJ, Williams DL Jr, O’Brien JA, Valenti O, McDonald TP, Clements MK, Wang R, DiLella AG, Hess JF, Kinney GG, Conn PJ. Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci USA 2003; 100(23): 13668-13673
doi: 10.1073/pnas.1835724100 pmid:14593202
29 Valenti O, Marino MJ, Wittmann M, Lis E, DiLella AG, Kinney GG, Conn PJ. Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J Neurosci 2003; 23(18): 7218-7226
pmid:12904482
30 Macinnes N, Duty S. Group III metabotropic glutamate receptors act as hetero-receptors modulating evoked GABA release in the globus pallidus in vivo. Eur J Pharmacol 2008; 580(1-2): 95-99
doi: 10.1016/j.ejphar.2007.10.030 pmid:18035348
31 Beurrier C, Lopez S, Révy D, Selvam C, Goudet C, Lhérondel M, Gubellini P, Kerkerian-LeGoff L, Acher F, Pin JP, Amalric M. Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J 2009; 23(10): 3619-3628
doi: 10.1096/fj.09-131789 pmid:19525404
32 Wittmann M, Marino MJ, Conn PJ. Dopamine modulates the function of group II and group III metabotropic glutamate receptors in the substantia nigra pars reticulata. J Pharmacol Exp Ther 2002; 302(2): 433-441
doi: 10.1124/jpet.102.033266 pmid:12130700
33 Mao L, Wang JQ. Distinct inhibition of acute cocaine-stimulated motor activity following microinjection of a group III metabotropic glutamate receptor agonist into the dorsal striatum of rats. Pharmacol Biochem Behav 2000; 67(1): 93-101
doi: 10.1016/S0091-3057(00)00307-5 pmid:11113488
34 Swanson CJ, Kalivas PW. Regulation of locomotor activity by metabotropic glutamate receptors in the nucleus accumbens and ventral tegmental area. J Pharmacol Exp Ther 2000; 292(1): 406-414
pmid:10604977
35 David HN, Abraini JH. Blockade of the locomotor stimulant effects of amphetamine by group I, group II, and group III metabotropic glutamate receptor ligands in the rat nucleus accumbens: possible interactions with dopamine receptors. Neuropharmacology 2003; 44(6): 717-727
doi: 10.1016/S0028-3908(03)00052-2 pmid:12681370
36 Pa?ucha-Poniewiera A, K?odzińska A, Stachowicz K, Tokarski K, Hess G, Schann S, Frauli M, Neuville P, Pilc A. Peripheral administration of group III mGlu receptor agonist ACPT-I exerts potential antipsychotic effects in rodents. Neuropharmacology 2008; 55(4): 517-524
doi: 10.1016/j.neuropharm.2008.06.033 pmid:18619473
37 Hu G, Duffy P, Swanson C, Ghasemzadeh MB, Kalivas PW. The regulation of dopamine transmission by metabotropic glutamate receptors. J Pharmacol Exp Ther 1999; 289(1): 412-416
pmid:10087032
38 Mao L, Lau YS, Wang JQ. Activation of group III metabotropic glutamate receptors inhibits basal and amphetamine-stimulated dopamine release in rat dorsal striatum: an in vivo microdialysis study. Eur J Pharmacol 2000; 404(3): 289-297
doi: 10.1016/S0014-2999(00)00633-6 pmid:10996594
39 Wang JQ, McGinty JF. Glutamate-dopamine interactions mediate the effects of psychostimulant drugs. Addict Biol 1999; 4(2): 141-150
doi: 10.1080/13556219971641 pmid:20575780
40 Xi ZX, Shen H, Baker DA, Kalivas PW. Inhibition of non-vesicular glutamate release by group III metabotropic glutamate receptors in the nucleus accumbens. J Neurochem 2003; 87(5): 1204-1212
doi: 10.1046/j.1471-4159.2003.02093.x pmid:14622100
41 Martin G, Nie Z, Siggins GR. Metabotropic glutamate receptors regulate N-methyl-D-aspartate-mediated synaptic transmission in nucleus accumbens. J Neurophysiol 1997; 78(6): 3028-3038
pmid:9405522
42 Zhang GC, Vu K, Parelkar NK, Mao LM, Stanford IM, Fibuch EE, Wang JQ. Acute administration of cocaine reduces metabotropic glutamate receptor 8 protein expression in the rat striatum in vivo. Neurosci Lett 2009; 449(3): 224-227
doi: 10.1016/j.neulet.2008.11.008 pmid:19010389
43 Parelkar NK, Wang JQ. Upregulation of metabotropic glutamate receptor 8 mRNA expression in the rat forebrain after repeated amphetamine administration. Neurosci Lett 2008; 433(3): 250-254
doi: 10.1016/j.neulet.2008.01.015 pmid:18255232
44 Neugebauer V, Zinebi F, Russell R, Gallagher JP, Shinnick-Gallagher P. Cocaine and kindling alter the sensitivity of group II and III metabotropic glutamate receptors in the central amygdala. J Neurophysiol 2000; 84(2): 759-770
pmid:10938303
45 Li X, Li J, Peng XQ, Spiller K, Gardner EL, Xi ZX. Metabotropic glutamate receptor 7 modulates the rewarding effects of cocaine in rats: involvement of a ventral pallidal GABAergic mechanism. Neuropsychopharmacology 2009; 34(7): 1783-1796
doi: 10.1038/npp.2008.236 pmid:19158667
46 Li X, Li J, Gardner EL, Xi ZX. Activation of mGluR7s inhibits cocaine-induced reinstatement of drug-seeking behavior by a nucleus accumbens glutamate-mGluR2/3 mechanism in rats. J Neurochem 2010; 114(5): 1368-1380
pmid:20534005
47 Li X, Gardner EL, Xi ZX. The metabotropic glutamate receptor 7 (mGluR7) allosteric agonist AMN082 modulates nucleus accumbens GABA and glutamate, but not dopamine, in rats. Neuropharmacology 2008; 54(3): 542-551
doi: 10.1016/j.neuropharm.2007.11.005 pmid:18155073
48 Spanagel R, Kiefer F. Drugs for relapse prevention of alcoholism: ten years of progress. Trends Pharmacol Sci 2008; 29(3): 109-115
doi: 10.1016/j.tips.2007.12.005 pmid:18262663
49 Flor PJ, Van Der Putten H, Rüegg D, Lukic S, Leonhardt T, Bence M, Sansig G, Kn?pfel T, Kuhn R. A novel splice variant of a metabotropic glutamate receptor, human mGluR7b. Neuropharmacology 1997; 36(2): 153-159
doi: 10.1016/S0028-3908(96)00176-1 pmid:9144652
50 Vadasz C, Saito M, Gyetvai BM, Oros M, Szakall I, Kovacs KM, Prasad VV, Toth R. Glutamate receptor metabotropic 7 is cis-regulated in the mouse brain and modulates alcohol drinking. Genomics 2007; 90(6): 690-702
doi: 10.1016/j.ygeno.2007.08.006 pmid:17936574
51 Bahi A, Fizia K, Dietz M, Gasparini F, Flor PJ. Pharmacological modulation of mGluR7 with AMN082 and MMPIP exerts specific influences on alcohol consumption and preference in rats. Addict Biol 2012; 17(2): 235-247
doi: 10.1111/j.1369-1600.2010.00310.x pmid:21392179
52 Salling MC, Faccidomo S, Hodge CW. Nonselective suppression of operant ethanol and sucrose self-administration by the mGluR7 positive allosteric modulator AMN082. Pharmacol Biochem Behav 2008; 91(1): 14-20
doi: 10.1016/j.pbb.2008.06.006 pmid:18593591
53 Bahi A. The selective metabotropic glutamate receptor 7 allosteric agonist AMN082 prevents reinstatement of extinguished ethanol-induced conditioned place preference in mice. Pharmacol Biochem Behav 2012; 101(2): 193-200
doi: 10.1016/j.pbb.2012.01.008 pmid:22269296
54 Gyetvai B, Simonyi A, Oros M, Saito M, Smiley J, Vadász C. mGluR7 genetics and alcohol: intersection yields clues for addiction. Neurochem Res 2011; 36(6): 1087-1100
doi: 10.1007/s11064-011-0452-z pmid:21448595
55 Bahi A. Viral-mediated knockdown of mGluR7 in the nucleus accumbens mediates excessive alcohol drinking and increased ethanol-elicited conditioned place preference in rats. Neuropsychopharmacology 2012; (in press)
doi: 10.1038/npp.2012.122 pmid:22781839
56 Blednov YA, Walker D, Osterndorf-Kahanek E, Harris RA. Mice lacking metabotropic glutamate receptor 4 do not show the motor stimulatory effect of ethanol. Alcohol 2004; 34(2-3): 251-259
doi: 10.1016/j.alcohol.2004.10.003 pmid:15902920
57 B?ckstr?m P, Hyyti? P. Suppression of alcohol self-administration and cue-induced reinstatement of alcohol seeking by the mGlu2/3 receptor agonist LY379268 and the mGlu8 receptor agonist (S)-3,4-DCPG. Eur J Pharmacol 2005; 528(1-3): 110-118
doi: 10.1016/j.ejphar.2005.10.051 pmid:16324694
58 Fundytus ME, Ritchie J, Coderre TJ. Attenuation of morphine withdrawal symptoms by subtype-selective metabotropic glutamate receptor antagonists. Br J Pharmacol 1997; 120(6): 1015-1020
doi: 10.1038/sj.bjp.0701000 pmid:9134211
59 Pa?ucha-Poniewiera A, Novák K, Pilc A. Group III mGlu receptor agonist, ACPT-I, attenuates morphine-withdrawal symptoms after peripheral administration in mice. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(8): 1454-1457
doi: 10.1016/j.pnpbp.2009.07.029 pmid:19660510
60 Tokuyama S, Wakabayashi H, Ho IK. Direct evidence for a role of glutamate in the expression of the opioid withdrawal syndrome. Eur J Pharmacol 1996; 295(2-3): 123-129
doi: 10.1016/0014-2999(95)00645-1 pmid:8720575
61 Guo M, Xu NJ, Li YT, Yang JY, Wu CF, Pei G. Morphine modulates glutamate release in the hippocampal CA1 area in mice. Neurosci Lett 2005; 381(1-2): 12-15
doi: 10.1016/j.neulet.2005.01.071 pmid:15882781
62 Bonci A, Williams JT. Increased probability of GABA release during withdrawal from morphine. J Neurosci 1997; 17(2): 796-803
pmid:8987801
[1] Xuefu Wang, Zhigang Tian. γδ T cells in liver diseases[J]. Front. Med., 2018, 12(3): 262-268.
[2] Shasha Zhu, Huimin Zhang, Li Bai. NKT cells in liver diseases[J]. Front. Med., 2018, 12(3): 249-261.
[3] Zhen He,Cheng Hu,Weiping Jia. miRNAs in non-alcoholic fatty liver disease[J]. Front. Med., 2016, 10(4): 389-396.
[4] Lixia Gan,Wei Xiang,Bin Xie,Liqing Yu. Molecular mechanisms of fatty liver in obesity[J]. Front. Med., 2015, 9(3): 275-287.
[5] Hui Dong, Fu’er Lu, Nan Wang, Xin Zou, Jingjing Rao. Type 2 diabetic patients with non-alcoholic fatty liver disease exhibit significant haemorheological abnormalities[J]. Front Med, 2011, 5(3): 288-293.
[6] Hong-Lian RUAN, Feng-Hua XU, Wen-Sheng LIU, Qi-Sheng FENG, Li-Zhen CHEN, Yi-Xin ZENG, Wei-Hua JIA, . Alcohol and tea consumption in relation to the risk of nasopharyngeal carcinoma in Guangdong, China[J]. Front. Med., 2010, 4(4): 448-456.
[7] Rui ZHU MD , Lin SHEN MD , Jianguo LIU MD , Weili ZHANG MM , Ling YANG MD , . Effect of decoction on CD14 expression in lipopolysaccharide signal transduction pathway of alcohol-induced liver disease in rats[J]. Front. Med., 2009, 3(3): 363-367.
[8] ZHANG Wanming, YUAN Yuesha, BIAN Cangli, TU Xianyu, ZHANG Wen, HUANG Huqiang, WANG Lan. Characterization of Bacillus amyloliquefacien contaminating 75% alcohol disinfectant[J]. Front. Med., 2008, 2(1): 113-116.
[9] ZHOU Guangde, ZHAO Jingmin, DING Xiaohui, PAN Deng, SUN Yanling, YANG Jianfa, ZHAO Yulai. Pathological study of 130 cases of nonalcoholic fatty liver disease based on NASH-CRN system[J]. Front. Med., 2007, 1(4): 413-417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed