Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med    2013, Vol. 7 Issue (4) : 397-400    https://doi.org/10.1007/s11684-013-0298-7
MINI-REVIEW
Monocyte subsets and their differentiation tendency after burn injury
Guangqing Wang, Zhaofan Xia()
Burn Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
 Download: PDF(90 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Monocytes are critical effectors and regulators of immune response. Studying the nomenclature of monocyte subsets may be beneficial for understanding the complex function of monocytes in steady and inflammatory states. A monocyte has the potential to differentiate into dendritic cells or macrophages, and this behavior significantly changes in severely burned patients and mice. The findings in the present study may help enhance understanding on the perturbation of the immune system after severe burn injury.

Keywords monocyte      differentiation      burn     
Corresponding Author(s): Xia Zhaofan,Email:xiazhaofan@163.com   
Issue Date: 05 December 2013
 Cite this article:   
Guangqing Wang,Zhaofan Xia. Monocyte subsets and their differentiation tendency after burn injury[J]. Front Med, 2013, 7(4): 397-400.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-013-0298-7
https://academic.hep.com.cn/fmd/EN/Y2013/V7/I4/397
1 Muthu K, He LK, Melstrom K, Szilagyi A, Gamelli RL, Shankar R. Perturbed bone marrow monocyte development following burn injury and sepsis promote hyporesponsive monocytes. J Burn Care Res 2008; 29(1): 12-21
pmid:18182893
2 Ziegler-Heitbrock L, Hofer TP. Toward a refined definition of monocyte subsets. Front Immunol 2013; 4: 23
doi: 10.3389/fimmu.2013.00023 pmid:23382732
3 Ancuta P, Rao R, Moses A, Mehle A, Shaw SK, Luscinskas FW, Gabuzda D. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes. J Exp Med 2003; 197(12): 1701-1707
doi: 10.1084/jem.20022156 pmid:12810688
4 Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB. Nomenclature of monocytes and dendritic cells in blood. Blood 2010; 116(16): e74-e80
doi: 10.1182/blood-2010-02-258558 pmid:20628149
5 Wong KL, Tai JJ, Wong WC, Han H, Sem X, Yeap WH, Kourilsky P, Wong SC. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011; 118(5): e16-e31
doi: 10.1182/blood-2010-12-326355 pmid:21653326
6 Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, Heine GH. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 2011; 118(12): e50-e61
doi: 10.1182/blood-2011-01-326827 pmid:21803849
7 Poehlmann H, Schefold JC, Zuckermann-Becker H, Volk HD, Meisel C. Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. Crit Care 2009; 13(4): R119
doi: 10.1186/cc7969 pmid:19604380
8 Skinner NA, MacIsaac CM, Hamilton JA, Visvanathan K. Regulation of Toll-like receptor (TLR)2 and TLR4 on CD14dimCD16+ monocytes in response to sepsis-related antigens. Clin Exp Immunol 2005; 141(2): 270-278
doi: 10.1111/j.1365-2249.2005.02839.x pmid:15996191
9 West SD, Goldberg D, Ziegler A, Krencicki M, Du Clos TW, Mold C. Transforming growth factor-β, macrophage colony-stimulating factor and C-reactive protein levels correlate with CD14(high)CD16+ monocyte induction and activation in trauma patients. PLoS ONE 2012; 7(12): e52406
doi: 10.1371/journal.pone.0052406 pmid:23285029
10 Schmid I, Baldwin GC, Jacobs EL, Isacescu V, Neagos N, Giorgi JV, Glaspy JA. Alterations in phenotype and cell-surface antigen expression levels of human monocytes: differential response to in vivo administration of rhM-CSF or rhGM-CSF. Cytometry 1995; 22(2): 103-110
doi: 10.1002/cyto.990220205 pmid:7587740
11 Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development of monocytes, macrophages and dendritic cells. Science 2010; 327(5966): 656-661
doi: 10.1126/science.1178331 pmid:20133564
12 Krutzik SR, Tan B, Li H, Ochoa MT, Liu PT, Sharfstein SE, Graeber TG, Sieling PA, Liu YJ, Rea TH, Bloom BR, Modlin RL. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med 2005; 11(6): 653-660
doi: 10.1038/nm1246 pmid:15880118
13 Aguilar-Ruiz SR, Torres-Aguilar H, González-Domínguez é, Narváez J, González-Pérez G, Vargas-Ayala G, Meraz-Ríos MA, García-Zepeda EA, Sánchez-Torres C. Human CD16+ and CD16- monocyte subsets display unique effector properties in inflammatory conditions in vivo. J Leukoc Biol 2011; 90(6): 1119-1131
doi: 10.1189/jlb.0111022 pmid:21937707
14 Balboa L, Romero MM, Laborde E, Sabio Y García CA, Basile JI, Schierloh P, Yokobori N, Musella RM, Castagnino J, de la Barrera S, Sasiain MC, Alemán M, Alemán M. Impaired dendritic cell differentiation of CD16-positive monocytes in tuberculosis: role of p38 MAPK. Eur J Immunol 2013; 43(2): 335-347
doi: 10.1002/eji.201242557 pmid:23192690
15 Randolph GJ, Sanchez-Schmitz G, Liebman RM, Sch?kel K. The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J Exp Med 2002; 196(4): 517-527
doi: 10.1084/jem.20011608 pmid:12186843
16 D’Arpa N, Accardo-Palumbo A, Amato G, D’Amelio L, Pileri D, Cataldo V, Mogavero R, Lombardo C, Napoli B, Conte F. Circulating dendritic cells following burn. Burns 2009; 35(4): 513-518
doi: 10.1016/j.burns.2008.05.027 pmid:19269101
17 Williams KN, Szilagyi A, He LK, Conrad P, Halerz M, Gamelli RL, Shankar R, Muthumalaiappan K. Dendritic cell depletion in burn patients is regulated by MafB expression. J Burn Care Res 2012; 33(6): 747-758
doi: 10.1097/BCR.0b013e318250457f pmid:22868453
18 Venet F, Tissot S, Debard AL, Faudot C, Crampé C, Pachot A, Ayala A, Monneret G. Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: correlation with severity and secondary septic shock. Crit Care Med 2007; 35(8): 1910-1917
doi: 10.1097/01.CCM.0000275271.77350.B6 pmid:17568330
20 Kobayashi M, Jeschke MG, Shigematsu K, Asai A, Yoshida S, Herndon DN, Suzuki F. M2b monocytes predominated in peripheral blood of severely burned patients. J Immunol 2010; 185(12): 7174-7179
doi: 10.4049/jimmunol.0903935 pmid:21068408
21 Kobayashi M, Jeschke MG, Asai A, Kogiso M, Yoshida S, Herndon DN, Suzuki F. Propranolol as a modulator of M2b monocytes in severely burned patients. J Leukoc Biol 2011; 89(5): 797-803
doi: 10.1189/jlb.1010553 pmid:21330352
22 Rocher C, Singla R, Singal PK, Parthasarathy S, Singla DK. Bone morphogenetic protein 7 polarizes THP-1 cells into M2 macrophages. Can J Physiol Pharmacol 2012; 90(7): 947-951
doi: 10.1139/y2012-102 pmid:22720873
23 Foucher ED, Blanchard S, Preisser L, Garo E, Ifrah N, Guardiola P, Delneste Y, Jeannin P. IL-34 induces the differentiation of human monocytes into immunosuppressive macrophages: antagonistic effects of GM-CSF and IFNγ. PLoS ONE 2013; 8(2): e56045
doi: 10.1371/journal.pone.0056045 pmid:23409120
24 Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003; 19(1): 71-82
doi: 10.1016/S1074-7613(03)00174-2 pmid:12871640
25 Muthu K, He LK, Szilagyi A, Stevenson J, Gamelli RL, Shankar R. Propranolol restores the tumor necrosis factor-alpha response of circulating inflammatory monocytes and granulocytes after burn injury and sepsis. J Burn Care Res 2009; 30(1): 8-18
doi: 10.1097/BCR.0b013e3181921f22 pmid:19060758
[1] Yufeng Zhao, Xueyun Yu, Xinyu Cao, Lin Luo, Liyun He, Shusong Mao, Li Ma, Peijing Rong, Yuxue Zhao, Guozheng Li, Baoyan Liu. Cluster analysis for syndromes of real-world coronary heart disease with angina pectoris[J]. Front. Med., 2018, 12(5): 566-571.
[2] Xiao-Dong Yang, Shao-Cong Sun. Deubiquitinases as pivotal regulators of T cell functions[J]. Front. Med., 2018, 12(4): 451-462.
[3] Xiaoling Wang,Yun Tan,Yizhen Li,Jingming Li,Wen Jin,Kankan Wang. Repression of CDKN2C caused by PML/RARα binding promotes the proliferation and differentiation block in acute promyelocytic leukemia[J]. Front. Med., 2016, 10(4): 420-429.
[4] Nan Ding,Jiafei Xi,Yanming Li,Xiaoyan Xie,Jian Shi,Zhaojun Zhang,Yanhua Li,Fang Fang,Sihan Wang,Wen Yue,Xuetao Pei,Xiangdong Fang. Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation[J]. Front. Med., 2016, 10(3): 297-310.
[5] Xiaoyu Wang,Yuxuan Gao,Haigang Shi,Na Liu,Wei Zhang,Hongbo Li. Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells[J]. Front. Med., 2016, 10(3): 286-296.
[6] Aining Xu,Lin Cheng. Chemical transdifferentiation: closer to regenerative medicine[J]. Front. Med., 2016, 10(2): 152-165.
[7] Rong Zhang, Di Wang, Zhuying Xia, Chao Chen, Peng Cheng, Hui Xie, Xianghang Luo. The role of microRNAs in adipocyte differentiation[J]. Front Med, 2013, 7(2): 223-230.
[8] Zhuying Xia, Chao Chen, Peng Chen, Hui Xie, Xianghang Luo. MicroRNAs and their roles in osteoclast differentiation[J]. Front Med, 2011, 5(4): 414-419.
[9] Shihua Wang, Xuebin Qu, Robert Chunhua Zhao. Mesenchymal stem cells hold promise for regenerative medicine[J]. Front Med, 2011, 5(4): 372-378.
[10] Liang SHI, Li-Hua HU, Yi-Rong LI. Autoimmune regulator regulates autophagy in THP-1 human monocytes[J]. Front Med Chin, 2010, 4(3): 336-341.
[11] WANG Shiliang. Achievements in burn surgery over the past 50 years in China[J]. Front. Med., 2008, 2(4): 332-336.
[12] GE Jian, LIU Jingbo. The stem cell and tissue engineering research in Chinese ophthalmology[J]. Front. Med., 2007, 1(1): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed